

Physical Geology EARTH REVEALED

Fourth Edition

David McGeary

Emeritus of California State University at Sacramento

Charles C. Plummer

California State University at Sacramento

Diane H. Carlson

California State University at Sacramento

McGraw-Hill Higher Education χ

A Division of The McGraw-Hill Companies

PHYSICAL GEOLOGY: EARTH REVEALED, FOURTH EDITION

Published by McGraw-Hill, an imprint of The McGraw-Hill Companies, Inc., 1221 Avenue of the Americas, New York, NY 10020. Copyright © 2001, 1998, 1994, 1992 by The McGraw-Hill Companies, Inc. All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written consent of The McGraw-Hill Companies, Inc., including, but not limited to, in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the United States.

This book is printed on recycled, acid-free paper containing 10% postconsumer waste.

4567890QPD/QPD098765432

ISBN 0-07-366183-X ISBN 0-07-118082-6 (ISE)

Vice president and editor-in-chief: Kevin T. Kane

Publisher: JP Lenney

Sponsoring editor: Robert Smith Developmental editor: Lisa Leibold Editorial assistant: Jenni Lang

Senior marketing manager: Lisa L. Gottschalk

Project manager: Vicki Krug

Associate media producer: Judi David Production supervisor: Enboge Chong

Coordinator of freelance design: David W. Hash

Cover designer: Maureen McCutcheon

Cover image: ©FPG International/Alan Kearney Senior photo research coordinator: Carrie K. Burger

Photo research: LouAnn K. Wilson

Supplement coordinator: Brenda A. Ernzen

Compositor: Shepherd, Inc. Typeface: 11/12 AGaramond

Printer: Quebecor Printing Book Group/Dubuque, IA

Library of Congress Cataloging-in-Publication Data

McGeary, David.

Physical geology : Earth revealed. — 4th ed. / David McGeary, Charles C. Plummer, Diane H. Carlson.

p. cm.

"This book contains the same text and illustrations as the updated version of the eighth edition of Physical geology by Plummer, McGeary and Carlson. The chapter order has been changed so that . . featured as the companion text to 'Earth revealed introductory geology,' a PBS television course and video resource produced in collaboration with the Annenburg/CPB Project"—Pref.

Includes index.

ISBN 0-07-366183-X (acid-free paper)

1. Physical geology. I. Plummer, Charles C., 1937— . II. Carlson, Diane H. III. Earth revealed (Television program). IV. Title.

QE28.2 .M34 2001 551—dc21

00-033937

CIP

INTERNATIONAL EDITION ISBN 0-07-118082-6

Copyright © 2001. Exclusive rights by The McGraw-Hill Companies, Inc., for manufacture and export. This book cannot be re-exported from the country to which it is sold by McGraw-Hill. The International Edition is not available in North America.

www.mhhe.com

Physical Geology EARTH REVEALED

Free Plate Tectonics CD-ROM Inside

Preface

hysical Geology: Earth Revealed is a straightforward, easy-to-read introduction to geology both for nonscience majors and for students contemplating majoring in geology. This book contains the same text and illustrations as the updated version of the eighth edition of *Physical Geology* by Plummer, McGeary, and Carlson. The chapter order has been changed so that internal processes (plate tectonics, earthquakes, etc.) are covered in the first part of the book and external process (rivers, glaciers, etc.) are described toward the end of the book. This ordering is favored by many geology instructors. Physical Geology: Earth Revealed is featured as the companion text to Earth Revealed Introductory Geology, a PBS television course and video resource produced in collaboration with the Annenberg/CPB Project. Earth Revealed is a series of twenty-six half-hour video programs organized around the chapters of this text. The television programs document evidence of geologic principles at geographically diverse sites, often using a case study approach. Videocassettes can be purchased individually or as a thirteen-tape set. A Study Guide and Faculty Guide are also available to supplement the programs. For information regarding the use of Earth Revealed Introductory Geology as a television course, or to purchase videocassettes for institutional or classroom use, contact The Annenberg/ CPB Multimedia Collection at 1-800-LEARNER.

The book contains more information than can normally be covered during a college term. This provides flexibility for the instructor who wishes to emphasize some topics while covering other topics superficially. It is also useful to the student who wants to pursue topics beyond what is covered in the classroom.

This edition greatly expands and improves upon the use of electronic resources. Also integrated into this edition is David McConnell's *The Good Earth*, an Internet Resource for Introductory Geology. This digital method of teaching will give students a more "hands-on" approach to learning geology. *The Good Earth* is organized into chapters, with animations used to explain certain processes. Chapter summaries, quizzes, exercises, and web links to related websites are also included. With the purchase of a new textbook, the student will gain access to this resource, which can be found at http://www.mhhe.com/earthsci/geology/mcconnell/. Look for the Post-it notes on chapter opener pages to find out how *The Good Earth* can help you understand geology.

Journey Through Geology (the two CD-ROMs that accompany this book) is an exciting supplement. This was produced in partnership with The Smithsonian Institution. "Interacting with Journey Through Geology" at the end of each chapter has questions to help the student get the maximum benefit from use of the CDs.

The Internet section at the end of each chapter should make it easy and meaningful for the student to enrich his or her knowledge through the World Wide Web. We have listed websites that we personally checked for usefulness. The universal resource locators (URLs) are printed in blue and easy to read. However, typing in a lengthy URL will not be necessary as we have the sites listed as links on the book's website. The user need only click on the link. Appropriate new websites that are discovered after publication will be added to this book's website.

Obsolete or defunct websites will be so noted. To help students effectively and efficiently use the Internet from the website, we include step-by-step procedures and pose questions. The primary purpose of the questions is to guide students through thinking about the topic at hand. We expect that many students will explore topics beyond where we have let them.

Some of the changes we made for the fourth edition follow. Recent major disasters, such as the devastating earthquake in Turkey and the tsunami in New Guinea are described. We have taken a number of descriptions and examples of geologic resources from the final chapter of the book and integrated them into appropriate chapters elsewhere in the book. The rock cycle (in chapter 9) has been expanded to include a plate tectonic example. The discussion of the origin of magmas at convergent boundaries (chapter 11) places more emphasis on the current view by researchers that mafic magmas are generated in the asthenosphere above the subducted oceanic crust. All diagrams showing magma generation at convergent boundaries were redone. In the chapter on geologic time we have introduced the term "actualism" and discussed why it might be preferable to "uniformitarianism." Lateral continuity and inclusions have been added to the principles used for determining relative time relationships. In the metamorphic chapter we have related foliation to the modern concept of gravitational collapse and spreading. We moved unconformities from the structural geology chapter to the geological time chapter. We now use "numerical age" rather than "absolute age" in the geologic time chapter. A section on changing concepts of the age of the earth has been added. The relationship between isotopic dating and the geologic time scale has been expanded. The 1996 (and 1999) rockfall at Yosemite is used as an example of mass wasting. The stream chapter underwent a major revision and now includes an expanded discussion of flooding with examples from the 1997 floods in the upper Midwest and California. In the glaciation chapter we clarify and expand on the conversion of snow to glacier ice. In the structure chapter, the section on stress and strain and the behavior of rocks was rewritten and new examples and figures are included to clarify these difficult concepts. Love and Rayleigh waves are now discussed and illustrated in the earthquake chapter. In the chapter on mountains and the continental crust we added a section on the disparity of the height of the Rocky Mountains and the thickness of the crust and describe recent work that indicates that the Basin and Range Mountains were three kilometers higher than at present. An appendix listing commonly used prefixes, suffixes, and root words was added. The geologic map of North America was moved from the appendix to the inside front cover.

We added new boxes on water and ice—molecules and crystals, flight hazards associated with volcanoes, the eruptions on Montserrat compared to the disastrous eruption that destroyed St. Pierre on Martinique in 1902, the Bingham Canyon copper mine, highlights of biological evolution through time, and the meteorite from Mars with possible signs of fomer life. A box on water beneath glaciers describes the recently discovered lake beneath the East Antarctic Ice Sheet, surging glaciers, and subglacial volcanism and flooding in Iceland. The stream chapter includes boxes on the planned flood in the Grand Canyon

and how the recurrence interval of large floods is calculated. The structure chapter includes a box on how to find oil and the salt dome box has been expanded. The interior of the earth chapter now includes a box on the spinning inner core. In the mountains chapter we added a box on a systems approach to understanding mountains and expanded a former box, retitling it "Dance of the Continents (with SWEAT)."

The fourth edition has a new look with many of the diagrams redone or replaced. New photos have also been added and include the volcanic eruption at Soufriere, Montserrat, the 1997 Yosemite rockfall, glacially carved features in the Teton range, and giant stream ripples. Photos of many rocks and minerals and geologic structures have been replaced.

Supplements to Accompany Physical Geology: Earth Revealed, Fourth Edition:

- Journey Through Geology two CD-ROM set
- Instructor's Manual
- computerized testing software
- 224 transparencies and 350 slides
- Visual Resource Library CD-ROM
- Student Study Guide
- Physical Geology and Journey Through Geology websites

John M. Alderson Marymount College N. L. Archbold Western Illinois University Victor R. Baker The University of Texas Joan Baldwin El Camino College Alexander R. Ball Los Angeles Valley College Paul G. Bauer Cuesta College Kenneth A. Beem Montgomery College Robert E. Behling Western Virginia University Terrill R. Berkland Central Missouri State

David J. Berner Normandale Community College Peter E. Borella Riverside City College Ted Bornhorst Michigan Technological University

David P. Bucke University of Vermont Reid L. Buell Caltrans

Gary Carlson Midland Lutheran College Roseann Carlson Tidewater Community

Greg S. Conrad Sam Houston State University Peter Copeland University of Houston Kevin Cornwell California State University at Sacramento

Larry Davis St. John's University Paul A. Dike Glassboro State College Steven F. Dodin Community College of Allegheny County

Robert J. Elias University of Manitoba Stanley C. Fagerlin Southwest Missouri State University

Peter Fisher California State University Ronald C. Flemal Northern Illinois University Richard A. Flory California State University at

Robert D. Forester Collin County Community College

M. G. Frey University of New Orleans John S. Galehouse San Francisco State University Heather L. Gallacher Cleveland State University Lloyd Glawe Northeast Louisiana University Andrew J. Hajash Texas A&M

The American Geological Institute's Videodisc

- JLM Visuals Physical Geology Photo CD

Additional classroom tools include:

- Interactive Plate Tectonics CD-ROM, Annual Editions: Geology 98/99
- Student Atlas of Environmental Issues
- McGraw-Hill Learning Architecture

For additional information on Physical Geology: Earth Revealed, or Journey Through Geology CD-ROM, please visit our Websites at http://www.mhhe.com/earthsci/geology/plummer or www.mhhe.com/jtg.

We have tried to write a book that will be useful and exciting to students (and instructors). We would be grateful for any comments by users, especially regarding mistakes within the text or sources of good geological photographs.

We would like to thank Susan Slaymaker for writing the original boxed material on planetary geology, and Judi Kushick for writing the questions to accompany The Smithsonian Institution's Journey Through Geology CD-ROM.

We are also very grateful to the following reviewers of this text for their careful evaluation and useful suggestions for

Frank M. Hanna California State University— Northridge

Stephen B. Harper East Carolina University Stephen L. Harris California State University at Sacramento

Barry Haskell Los Angeles Pierce College Miles O. Hayes University of South Carolina Richard A. Heimlich Kent State University Timothy Horner California State University at

Mary S. Hubbard Kansas State University Roy L. Ingram University of North Carolina Clark M. Johnson University of Wisconsin-

Norris W. Jones University of Wisconsin-Oshkosh

Manfred Kehlenbeck Lakehead University James G. Kirchner Illinois State University Lawrence W. Knight William Rainey Harper College

Ronald H. Konig University of Arkansas Albert M. Kudo The University of New Mexico Howard Level Ventura College

David N. Lumsden Memphis State University Harmon D. Maher, Jr. University of Nebraska at Omaha

Donald Marchand, Jr. Old Dominion University

Kathleen Marsaglia University of Texas at

James McLelland Colgate University William S. McLoda Mountain View College Margaret E. McMillan University of Arkansas at Little Rock

C. Daniel Miller U.S. Geological Survey William D. Orndorff Concord College

Bruce C. Panuska Mississippi State University Jacqueline Patterson California State University, Fullerton

David R. Privette Central Piedmont Community College

Frederick J. Rich Georgia Southern University

Gary D. Rosenberg Indiana University-Purdue University at Indianapolis

Robert A. Schiffman Bakersfield College

Vernon P. Scott Oklahoma State University

Barbara Sherriff University of Winnipeg

Charles R. Singer Youngstown State University Kenneth G. Smith Dallas Baptist University

William A. Smith Grand Valley State University

Richard Smosna University of West Virginia

Steven Stearns College of Charleston

Don W. Steeples University of Kansas

Dion C. Stewart Adams State College M. Ali Tabidian California State University,

Norman W. Ten Brink Grand Valley State

J. Robert Thompson Glendale Community College

Daniel R. Tucker University of Southwestern Louisiana

Sherwood D. Tuttle University of Iowa Kenneth J. Van Dellen Macomb Community

W. R. Van Schmus University of Kansas Stephen Wareham California State University at Fullerton

Stephen H. Watts Sir Sanford Fleming College William J. Wayne University of Nebraska Thomas H. Wolosz SUNY College of

Plattsburgh

A special thank you to the '97 GSA Focus

Scott Babcock Western Washington University Drew Coleman Boston University

Ralph Davis University of Arkansas

Megan Jones University of Minnesota and Inver Hills Community College

Michael Katuna College of Charleston

Peter Kresan University of Arizona

James Miller Southwest Missouri State

Preface

Take a closer look at *today's* world.

The proven Physical Geology Learning System.

he proven *Learning*System that has been successful for over 25 years now has the most advanced technology resources.

This updated Internet edition of *Physical Geology* has been thoroughly enhanced to bring you the most current information on how physical geology is working in your world today.

One of the most exciting additions to this package is the incorporation of *The*

Good Earth Website.

This visionary method of teaching gives students a more hands-on approach to learning geology by allowing them to view animations that explain processes, access quizzes and exercises, and explore web links.

Visit this site at http://www.mhhe.com/plummer
High-tech, interactive learning
from The Smithsonian Institution.
This two CD-ROM set is packaged
free with every new text.

... THROUGH TODAY'S RESOURCES.

Table 7.2	Earthquake Magnitudes		
		Richter Magnitude	Moment Magnitude
1811-12 1857 1872 1886	New Madrid, Missouri area Fort Tejon, S. Calif: Lone Pine, Calif. Charteston, South Carolina	7.5, 7.3, 7.8 7.6 7.3 6.7	7.7, 7.6, 7.9 7.9 7.8 7.0
1906 1915 1933 1952	San Francisco. N. Calif. Pleasant Valley, Nevada Long Beach, S. Calif. Kern County, S. Calif.	8.25 7.7 6.3 7.2	77 7.1 6.2 7.5
1954 1957 1958 1959	Dixie Yalley, Nevada Algurian Islands, Alaska Southeastern Alaska Hebgan Lake, Montana	72,71 8.1 7.9 7.7	7,3,6.9 8.6 8.3 7.3
1960 1964 1965 1970	Chile near Anchorage, Alaska Aleutian Islanda, Alaska Peru	8.5 8.6 8.2 7.75	9.5 9.2 8.7 7.9
1971 1975 1976 1980	San Fernando Valley, S. Calif. Hawaii China Humboldt County, N. Calif.	6.4 7.2 7.6 6.9	6.6 7.5 7.5 7.2
1983 1983 1983	Coalinga, Calif. Challis, Vidaho Adrondeck Mountains, New York Hawaii	6.7 7.2 5.1 6.6	6.2 7.0 4.9
1965 1967 1967 1988	Ixtapa, Mexico Lawrenosville, Illinois Whitter, S. Calif. Quebec	5:0 5:9 6:0	8.1,7.5 5.0 5.9
1989 1989 1992 1992	Loma Prieta, N. Calif. Hawaii Humbofdt County, N. Calif. Lunders, S. Calif.	7.0 6.1 7.1, 6.6, 6.7 7.8, 6.7	7.2 6.4 7.25,6.4
1994 1995 1998 1999	Northridge, S. Calif. Kobe, Japan (7.2 on Japanese scale) Papua, New Guinea Izmit, Turkey Taipal, Talwan	6.4 6.8	6.7 6.9 7.1 7.4 7.6

A hallmark of *Physical Geology* is the inclusion of timely topics. Recent geologic events like the devastating earthquake in Turkey and the tsunami in Papua, New Guinea are incorporated.

To support these timely topics, you'll find the text is filled with updated resources. These "Exploring Resources" are found at the end of every chapter and provide you and your students with opportunities to expand your knowledge. Every chapter also includes "Interacting with Journey Through Geology CD-ROM" questions that help tie the concepts of the chapter to modules of The Smithsonian Institution's Journey Through Geology two CD-ROM set.

Contents

Meet the Authors ii Preface x The Learning System xii

CHAPTER 1

Introduction to Physical Geology 2

Who Needs Geology? 4
Avoiding Geologic Hazards 6
Supplying Things We Need 7
Protecting the Environment 8
Understanding Our Surroundings 11
An Overview of Physical Geology—Important
Concepts 11
Internal Processes: How the Earth's Internal Heat
Engine Works 14
The Earth's Interior 15
The Theory of Plate Tectonics 16
Surficial Processes: The Earth's External Heat
Engine 18

Geologic Time 21
Summary 22
Terms to Remember* 23
Testing Your Knowledge* 23
Expanding Your Knowledge* 24
Exploring Resources* 24
Interacting with Journey Through Geology
CD-ROM* 25

CHAPTER 2

The Earth's Interior 26

Evidence from Seismic Waves 28
The Earth's Internal Structure 29
The Earth's Crust 30
The Mantle 30
The Core 32
Isostasy 35
Gravity Measurements 37
The Earth's Magnetic Field 39
Magnetic Reversals 40
Magnetic Anomalies 41
Heat Within the Earth 44
Geothermal Gradient 44
Heat Flow 45
Summary 45

CHAPTER 3

The Sea Floor 48

Origin of the Ocean 50 Methods of Studying the Sea Floor 51 Features of the Sea Floor 52 Continental Shelves and Continental Slopes 52 Submarine Canyons 54 Turbidity Currents 55 Passive Continental Margins 55 The Continental Rise 55 Abyssal Plains 56 Active Continental Margins 56 Oceanic Trenches 57 The Mid-Oceanic Ridge 57 Geologic Activity on the Ridge 58 Biologic Activity on the Ridge 58 Fracture Zones 61 Seamounts, Guyots, and Aseismic Ridges 61 Reefs 62 Sediments of the Sea Floor 64 Oceanic Crust and Ophiolites 64 The Age of the Sea Floor 66 The Sea Floor and Plate Tectonics 67 Summary 67

CHAPTER 4

Plate Tectonics 70

The Early Case for Continental Drift 72
Skepticism about Continental Drift 74
Paleomagnetism and the Revival
of Continental Drift 75
Recent Evidence for Continental Drift 76
History of Continental Positions 77

^{*}These end-of-chapter sections appear in every chapter.

Sea-Floor Spreading 77 Hess's Driving Force 78 Explanations 78 Plates and Plate Motion 79 How Do We Know That Plates Move? 80 Marine Magnetic Anomalies 80 Another Test: Fracture Zones and Transform Faults 83 Measuring Plate Motion Directly 84 Divergent Plate Boundaries 84 Transform Boundaries 87 Convergent Plate Boundaries 88 Ocean-Ocean Convergence 89 Ocean-Continent Convergence 90 Continent-Continent Convergence 92 Backarc Spreading 93 The Motion of Plate Boundaries 94 Plate Size 94 The Attractiveness of Plate Tectonics 94 What Causes Plate Motions? 95 Mantle Plumes and Hot Spots 98 The Relationship Between Plate Tectonics and Ore Deposits 100 A Final Note 104 Summary 104

CHAPTER 5

Mountain Belts and the Continental Crust 108

Characteristics of Major Mountain Belts 111 Size and Alignment 111 Ages of Mountain Belts and Continents 111 Thickness and Characteristics of Rock Layers 113 Patterns of Folding and Faulting 114 Metamorphism and Plutonism 116 Normal Faulting 116 Thickness and Density of Rocks 116 Features of Active Mountain Ranges 117 The Evolution of a Mountain Belt 117 The Accumulation Stage 117 The Orogenic Stage 118 The Uplift and Block-faulting Stage 121 The Growth of Continents 126 Suspect and Exotic Terranes 127 Summary 130

CHAPTER 6

Geologic Structures 132

Tectonic Forces at Work 134

Stress and Strain in the Earth's Crust 134

Behavior of Rocks to Stress and Strain 135

Present Deformation of the Crust 136

Structures as a Record of the Geologic Past 137

Geologic Maps and Field Methods 137

Folds 139
Geometry of Folds 139
Interpreting Folds 142
Fractures in Rock 143
Joints 144
Faults 146
Summary 155

CHAPTER 7

Earthquakes 158

Causes of Earthquakes 160 Seismic Waves 162 Body Waves 162 Surface Waves 162 Locating and Measuring Earthquakes 162 Determining the Location of an Earthquake 165 Measuring the Size of an Earthquake 166 Location and Size of Earthquakes in the United States 169 Effects of Earthquakes 171 Tsunamis 175 World Distribution of Earthquakes 177 First-Motion Studies of Earthquakes 180 Earthquakes and Plate Tectonics 180 Earthquakes at Plate Boundaries 181 Subduction Angle 184 Earthquake Prediction 184 Earthquake Control 185 Summary 187

CHAPTER 8

Time and Geology 190

The Key to the Past 192 Relative Time 192 Principles Used to Determine Relative Age 192 Correlation 197 The Standard Geologic Time Scale 200 Unconformities 201 Disconformities 201 Angular Unconformities 203 Nonconformities 204 Numerical Age 204 Isotopic Dating 204 Uses of Isotopic Dating 208 Combining Relative and Numerical Ages 208 Age of the Earth 209 Comprehending Geologic Time 209 Summary 213

CHAPTER 9

Atoms, Elements, and Minerals 216

Atoms and Elements 218 Chemical Activity 220

Contents

Ions 220 Chemical Composition of the Earth's Crust 221 Crystallinity 222 The Silicon-Oxygen Tetrahedron 223 Minerals 227 Crystalline Solids 227 Natural and Inorganic Substances 227 Definite Chemical Composition 227 The Important Minerals 228 The Physical Properties of Minerals 230 Color 230 Streak 230 Luster 230 Hardness 230 External Crystal Form 231 Cleavage 233 Fracture 235

Simple Chemical Tests 236 The Rock Cycle 237 Summary 239

Specific Gravity 235

Other Properties 236

CHAPTER 10

Volcanism and Extrusive Rocks 242

Effects on Humans 244

The Growth of Hawaii 244

Geothermal Energy 244

Effect on Climate 244

Volcanic Catastrophes 247

Eruptive Violence and Physic

Eruptive Violence and Physical Characteristics of Lava 248

Lava 240

Extrusive Rocks and Gases 249

Scientific Investigation of Volcanism 249

Gases 250

Extrusive Rocks 250

Types of Volcanoes 253

Shield Volcanoes 254

Cinder Cones 254

Composite Volcanoes 256

Volcanic Domes 259

Lava Floods 261

Submarine Eruptions 262

Pillow Basalts 263

Summary 265

CHAPTER 11

Igneous Rocks, Intrusive Activity, and the Origin of Igneous Rocks 268

Igneous Rocks 271

Identification of Igneous Rocks 271

Varieties of Granite 274

Chemistry of Igneous Rocks 274

Intrusive Bodies 275

Shallow Intrusive Structures 276

Intrusives That Crystallize at Depth 277

Abundance and Distribution of Plutonic Rocks 279

How Magma Forms 279

Heat for Melting Rock 280

Factors That Control Melting Temperatures 280

How Magmas of Different Compositions Evolve 282

Differentiation and Bowen's Reaction Theory 282

Partial Melting 284

Assimilation 285

Mixing of Magmas 285

Explaining Igneous Activity by Plate Tectonics 286

Igneous Processes at Divergent Boundaries 286

Intraplate Igneous Activity 286

Igneous Processes at Convergent Boundaries 287

Summary 289

CHAPTER 12

Weathering and Soil 292

Weathering, Erosion, and Transportation 294

How Weathering Alters Rocks 294

Effects of Weathering 294

Mechanical Weathering 294

Frost Action 294

Abrasion 296

Pressure Release 297

Chemical Weathering 298

Role of Oxygen 298

Role of Acid 299

Solution Weathering 300

Chemical Weathering of Feldspar 301

Chemical Weathering of Other Minerals 302

Weathering and Climate 303

Weathering Products 303

Soil 303

Soil Horizons 304

Residual and Transported Soils 304

Soils, Parent Rock, Time, and Slope 305

Organic Activity 306

Soils and Climate 306

Buried Soils 307

Summary 308

CHAPTER 13

Mass Wasting 310

Classification of Mass Wasting 312

Rate of Movement 312

Type of Material 312

Type of Movement 314

Controlling Factors in Mass Wasting 315

Gravity 316

Water 316

Common Types of Mass Wasting 317

Creep 317

Debris Flow 318

Contents

Rockfalls and Rockslides 324

Preventing Landslides 327

Preventing Mass Wasting of Debris 327

Preventing Rockfalls and Rockslides on Highways 328

Summary 330

CHAPTER 14

Sediments and Sedimentary Rocks 332

Sediment 334

Transportation 334

Deposition 335

Preservation 336

Lithification 337

Types of Sedimentary Rocks 338

Clastic Rocks 338

Breccia and Conglomerate 338

Sandstone 339

The Fine-Grained Rocks 340

Chemical Sedimentary Rocks 342

Carbonate Rocks 342

Chert 345

Evaporites 346

Organic Sedimentary Rocks 347

Coal 347

The Origin of Oil and Gas 347

Sedimentary Structures 347

Formations 351

Interpretation of Sedimentary Rocks 352

Source Area 352

Environment of Deposition 354

Plate Tectonics and Sedimentary Rocks 357

Summary 358

CHAPTER 15

Metamorphism, Metamorphic Rocks, and Hydrothermal Rocks 362

Factors Controlling the Characteristics of Metamorphic

Rocks 364

Composition of the Parent Rock 364

Temperature 365

Pressure 365

Fluids 367

Time 368

Classification of Metamorphic Rocks 368

Types of Metamorphism 368

Contact Metamorphism 368

Regional Metamorphism 370

Plate Tectonics and Metamorphism 374

Hydrothermal Processes 375

Hydrothermal Activity at Divergent Plate

Boundaries 375

Metasomatism 377

Hydrothermal Rocks and Minerals 378

Sources of Water 379

Summary 381

CHAPTER 16

Streams and Floods 384

The Hydrologic Cycle 386

Channel Flow and Sheet Flow 386

Drainage Basins 388

Drainage Patterns 388

Factors Affecting Stream Erosion and Deposition 389

Velocity 389

Gradient 390

Channel Shape and Roughness 390

Discharge 391

Stream Erosion 392

Stream Transportation of Sediment 393

Stream Deposition 394

Bars 394

Braided Streams 395

Meandering Streams and Point Bars 399

Flood Plains 401

Deltas 403

Alluvial Fans 405

Flooding 406

Urban Flooding 406

Flash Floods 409

Controlling Floods 410

The Great Flood of 1993 411

Stream Valley Development 412

Downcutting and Base Level 412

The Concept of a Graded Stream 414

Lateral Erosion 415

Headward Erosion and Stream Piracy 415

Stream Terraces 416

Incised Meanders 417

Superposed Streams 419

Summary 419

CHAPTER 17

Ground Water 422

Porosity and Permeability 424

The Water Table 424

The Movement of Ground Water 426

Aquifers 427

Wells 428

Springs and Streams 430

Pollution of Ground Water 430

Balancing Withdrawal and Recharge 436

Effects of Ground-Water Action 438

Caves, Sinkholes, and Karst Topography 438

Other Effects 440

Hot Water Underground 441

Geothermal Energy 442

Summary 443

CHAPTER 18

Deserts and Wind Action 446

Distribution of Deserts 448
Some Characteristics of Deserts 448
Desert Features in the Southwestern United States 451
Wind Action 454
Wind Erosion and Transportation 456

Wind Erosion and Transportation 456 Wind Deposition 459

Summary 464

CHAPTER 19

Glaciers and Glaciation 468

The Theory of Glacial Ages 470

Glaciers-Where They Are, How They Form and

Move 470

Distribution of Glaciers 470

Types of Glaciers 471

Formation and Growth of Glaciers 471

Movement of Valley Glaciers 474

Movement of Ice Sheets 479

Glacial Erosion 480

Erosional Landscapes Associated with Alpine

Glaciation 481

Erosional Landscapes Associated with Continental

Glaciation 484

Glacial Deposition 485

Moraines 486

Outwash 488

Glacial Lakes and Varves 489

Effects of Past Glaciation 489

The Glacial Ages 489

Direct Effects of Past Glaciation in North

America 491

Indirect Effects of Past Glaciation 496

Evidence for Older Glaciation 496

Summary 497

CHAPTER 20

Waves, Beaches, and Coasts 500

Water Waves 502

Surf 503

Nearshore Circulation 504

Wave Refraction 504

Longshore Currents 504

Rip Currents 505

Beaches 505

Longshore Drift of Sediment 506

Human Interference with Sand Drift 508

Sources of Sand on Beaches 508

Coasts and Coastal Features 508

Erosional Coasts 509

Depositional Coasts 512

Drowned Coasts 513

Uplifted Coasts 516

Coasts Shaped by Organisms 516 Summary 517

CHAPTER 21

Geologic Resources 520

Types of Resources 522

Resources and Reserves 523

Energy Use 523

Oil and Natural Gas 523

The Occurrence of Oil and Gas 524

Recovering the Oil 526

How Much Oil Do We Have Left? 527

Heavy Crude and Oil Sands 528

Oil Shale 528

Coal 529

Varieties of Coal 529

Occurrence of Coal 530

Environmental Effects 532

Reserves and Resources 532

Uranium 532

Alternative Sources of Energy 533

Metals and Ores 533

Origin of Metallic Ore Deposits 533

Ores Associated with Igneous Rocks 534

Ores Formed by Surface Processes 535

Metal Ores and Plate Tectonics 536

Mining 536

Environmental Effects 537

Some Important Metals 538

Iron 538

Copper 538

Aluminum 538

Lead 539

Zinc 539

Silver 539

Gold 539

Other Metals 540

Nonmetallic Resources 540

Construction Materials 540

Fertilizers and Evaporites 541

Other Nonmetallics 542

Some Future Trends 542

Summary 543

Appendixes A-G 546

Glossary 556

Index 570

Contents

Additional support helps you make the grade.

Use these helpful end-of-chapter learning aids to prepare for tests and quizzes.

Summary—overviews of chapter content.

Terms to Remember—important terms to review and remember.

Testing Your Knowledge— realistic sample tests you can use to prepare for exams and improve your grades.

Expanding Your Knowledge—questions that help you develop critical thinking skills.

Exploring Resources—Supplemental references in a number of different media.

Textbook reference

Wideotape

World Wide Web addresses

Interacting with Journey Through Geology
CD-ROM—questions that help tie the concepts of the chapter to modules of The Smithsonian Institution's Journey Through Geology two CD-ROM set.

Learn more about this text.
Visit the *Physical Geology* Website:

www.mhhe.com/plummer

Natural rock sculpture in Paria Plateau, Arizona. Sandstone formed from ancient sand dunes. Running water has eroded the rock into the present distinctive shapes.

Photo © Kerrick James

CHAPTER

LOST
THE GOOD EMPTH
T

Introduction to Physical Geology

eology uses the scientific method to explain natural aspects of the earth—for example, how mountains form or why oil resources are concentrated in some rocks and not in others. This chapter briefly explains how and why the earth's surface, and its interior, are constantly changing. It relates this constant change to the major geological topics of interaction of the atmosphere, water and rock, the modern theory of plate tectonics, and geologic time. These concepts form a framework for the rest of the book. Understanding the "big picture" presented here will aid you in comprehending the chapters that follow.