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Foreword

The 3 IFAC ROCOND Symposium on Robust Control Design took place in Hotel Renaissance,
Prague, Czech Republic during June 21 — 23, 2000.

The ROCOND symposia have developed from an IFAC conference on Control System Design,
which was held in Zirich, Switzerland in 1991. The 1% IFAC ROCOND Symposium was
organized in Rio de Janeiro, Brazil in 1994. The series then continued by the 2" IFAC ROCOND
Symposium in Budapest, Hungary in 1997.

Following the tradition, the aim of ROCOND 2000 was to bring together the robust control
community to discuss the trends in the field and to present new methods and applications.

The technical program included 21 sessions on robust control and related topics in identification
and signal processing. The methods presented in these sessions included linear matrix
inequalities, polynomial techniques, sliding modes, optimal control, fuzzy and adaptive control.
Attention was paid to linear as well as nonlinear systems.

The highlights of the technical program were two plenary lectures by world famous experts in the
field: Robust Control and Filtering Design for Discrete-Time Systems, by J. Geromel
(Universidade Estadual de Campinas, Brazil) and H2-optimization: Theory and Application to
Robust Control Design, by H. Kwakernaak (Twente University, Netherlands).

Very well attended was the invited application session on Parameter-Space Tools for Robust
Control, organized by J. Ackermann (German Aerospace Research Establishment,
Oberpfaffenhofen). Part of the Symposium was an Europoly Workshop, which included 3
sessions of high quality papers on the theory and applications of polynomial design methods in
control and signal processing.

It is my pleasure to congratulate U. Shaked (Tel Aviv University, Israel), the chairman of the
International Program Committee and M. Sebek (Czech Technical University in Prague, Czech
Republic), the chairman of the National Organizing Committee for their achievements in
preparing and running the Symposium. I hope that the robust control community enjoyed this
event and already look forward to the 4™ IFAC ROCOND Symposium to be held in Milano, Italy
in the year 2003.

Viadimir Kucera
Editor
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A POLYNOMIAL APPROACH TO ¢; OPTIMAL
CONTROL PROBLEMS
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Abstract: In this paper, the scalar multi-block ¢;-optimal control problem is consid-
ered. It is shown that it can be converted via polynomial equation techniques to an
infinite dimensional linear programming (LP) problem. Finite dimensional sub/super
approximations can be determined by considering two sequences of modified finite
dimensional linear programming problems derived directly from the YJBK parame-
terization by exploiting the underlying algebraic structure. This approach induces
the application of a consistent truncation strategy that leads to a redundancy-
free constraint formulation and, as a consequence, to linear programming problems
less affected by degeneracy. Further, more insight on the algebraic structure of the
problem and on the achievement of exact rational solutions is provided, allowing the
development of a simple and conceptually attractive theory. Copyright ©2000 IFAC

Keywords: ¢; Optimal Control, Linear Programming, Polynomials equation,

Discrete-time Systems.

" Definitions and notations

Z(-): The Z-transform operator. Given a matrix H
{f{(k)}fzo of causal real sequences: Z(H) = #(d) :
Z:Zo.—_o | H(k) | d*, in the complex variable d.

1,pxm* The real normed linear space of all p x m matrices
[I‘ of absolutely summable real causal sequences fI,-j =
{Hi;(k)}g2, with norm ||H||; := max;ep E;":l Yores
fl(lc) |< oo, where p:= {1,2,...,p}.

Apxm: The real normed linear space of all p x m matrices
H(d) which are Z-transform of some matrix sequence
He €1, pxm- Note that A is isomorphic to €1 pxm-

RE1,pxm: The subspace of £1,pxm of all real causal ma-
trix sequences each of whose entries has a rational Z-
transform.

RA: The subspace of Apxm consisting of elements each of
whose entries is a stable stable real rational functions.

9(X): Denotes the degree of the polynomial X.

In the sequel, with the hat we denote (matrix) sequences,
whereas the same unhatted variable denotes its correspond-

ing Z-transform; the space of polynomials will be denoted
by R[d] whereas rational transfer functions by R(d). With
R![d] will be denoted all polynomial with degree lower than
or equal to t.

1. INTRODUCTION

The discrete-time model matching ¢;-optimization
problem (Dahleh and Pearson, 1987; Dahleh and
Pearson, 1988) amounts to the minimization of
the A-norm of the closed-loop error transfer ma-
trix

£(d) = #H(d) - U(d)Q(d)V(d) (1)

where H, U, and V are given stable rational
matrices (€ RA) of appropriate dimensions and
Q € A is the free parameter. It is now well
understood that one-block problems (MacDonald



and Pearson, 1991; Staffans, 1991) admit rational
solutions, that is there exists a minimizer Q, €
RA provided that &/ and V have not transmission
zeros on the unit circle.

In bad-rank cases such a strong result of exis-
tence is not so far available and minimizers were
shown to exist only in A. In this case, finite di-
mensional approximations are of interest, along
with an estimate of the gap existing between
the corresponding sub-optima and the true op-
timum. Various strategies have been proposed to
that purpose: Q-design (Boyd and Barratt, 1991),
FMV-FME (Staffans, 1993), Delay Augmenta-
tion Method (Diaz-Bobillo and Dahleh, 1993),
Semidefinite (Quadratic) programming methods
(Elia and Dahleh, 1998). All of them, except the
last method, consist of adding additional con-
straints to the original optimization problem in
order to achieve sub-optimal finite dimensional
solutions. Further, in order to have an estimate
of the quality of the approximated solution, in
(Staffans, 1993) was firstly introduced the idea of
building a dual sequence of linear programming
problems whose solutions form a not-decreasing
sequence of super-optima converging from the be-
low to the optimum. The latter was obtained by
dropping some of the structural constraints exist-
ing between £ and Q in (1). The combined use of
such a sub/super-optimization scheme allows one
to obtain sequences of lower and upper bounds
both converging to the optimum. The Semidefinite
programming approach (Elia and Dahleh, 1998)
instead, embeds the original ¢; problem into
two finite dimensional Hs quadratic programming
problems (sub- and super-optimal) and uses the
LMI paradigm to numerically approach the prob-
lem.

The main goal of this paper is to present a
different characterization of the closed-loop er-
ror transfer function (1). This is done by resort-
ing the polynomial equation approach of Kucera
(Kucéra, 1979). This allows a more direct achieve-
ment of unconstrained suboptimal and superopti-
mal linear programming problems that are free of
most of the above defects. The key idea consists of
parameterizing both the closed-loop error £ and
the free parameter Q in terms of a polynomial
matrix, that really represents the available degrees
of freedom existing as long as the closed-loop sta-
bility and feedback structural constraints underly-
ing (1) have been satisfied. As a consequence, the
original optimization problem can be expressed in
terms of this new polynomial matrix, resulting in
an unconstrained linear programming problem.

Such a scheme was considered in (Casavola, 1996)
for scalar mixed-sensitivity problems. Here the 2 x
2 multi-block case is considered. The case treated
exhausts the ideas involved in the present polyno-

mial approach and extends directly to the general
MIMO case, that will be presented elsewhere.

2. PROBLEM FORMULATION

Consider the following system

_ [Gu(d Guald)
0= [ G110 G- 9910 € R@.

the YJBK parameterization of all admissible
closed-loop error maps can be characterized by a
matrix transfer function H and polynomial matri-
ces U and V as

_ | M Hae Uy
g_[Hzl HZZ:I—[U2:|Q[‘/1 Vz]v (3)

for some Q € A. In (3), we can assume w.l.o.g.
that H;;(d) € RA, U; € R[d] and V; € R[d], i =
1,2. Let H;; = N;;/D, Q = P/(DS) be defined
as polynomial ratios for some given polynomials
N;; and D, with D strictly-Schur, viz. all of their
possible zeros are outside of the unit disk, and
S and P free with S strictly-Schur and P € A
of possibly infinite degree. Further, let U(d) :=
ged(Uy,Us) and V(d) := ged(Vh, Va) denote the
respective greatest common polynomial divisors
so that U; = UU; and V; = VV;. Throughout the
paper we assume that

(A1) { e U(d), V(d) have no roots over the unit circle.

The problem we want to solve is the following ¢,
four-block model-matching problem

Hopt = érel&“g”_A (4)

2.1 Structural conditions

In order to solve the problem we first characterize
the class of all admissible closed-loop maps £ =
(&i5), 1,7 = 1,2, viz. compatible with the feedback
structure (3). To this end, for the sake of clarity,
we consider first the case in which the terms
HiaVo — HipVi, 1 = 1,2, and 'HljUz - szUl,
J = 1,2 are polynomials. Specifically, denote as
Ti,i=1,...,4

w[ 5]=[%] ®
[0n ~0y] H=[Ts Ta] . (6)

Note that the following identity holds true

T1Us + TaVi = ToU; + TsVs . (7)

Under the above assumption we have.



Lemma 1 - Let T; in (5)-(6) be polynomials.
Then, the all and the only &;;(d) that jointly
satisfy (3) can be parameterized in terms of a
possibly infinite degree free polynomial X (d) € A
as

&ij = E +U; V X (8)
In (8), Ef’j € R[d] are particular solutions of the
following pair of uncoupled polynomial Diophan-
tine equations

EuOsz - E22UIVI = TQUI + T3% ) (g)
Eglﬁlffg = EuUle =T102 - TSV‘Z 2 (10)

Remark 1 - Notice that the above parameteri-
zation characterizes the class of all admissible re-
sponses with finite support (deadbeat responses)
whenever X (d) is restricted to be a polynomial of
finite degree. A convenient choice in order to avoid
degree inflation in the solution is to select for E?j
as the minimal degree solutions of (9) and (10).
However, it is worth pointing out that the minimal
degree solutions of (9) and (10) with respect to the
first or the second of their arguments may differ in
general. This does not happen, e.g. for (9), when
6(U1 Vg) +6(V1 Uz) > 0(Ty U2 - T3V2) where 0(T")
denotes the degree of the polynomial 7'. A similar
condition holds for (10) ]

2.2 Stability conditions

The assumptions (5)-(6) imply also that

(Nix
(N1

DE?I)VQ ( 12_D
—DE?]-) Uy = (Ngj —

%) Vi,, (11)
DES)) Uy, (12)

where: = 1,2,5 = 1,2. From the above relations it
follows that there exists a single polynomial W (d)
such that

N;; — DE;

=U,V;w, i,5=1{1,2}, (13

which implies that E?j interpolate NT)L on the roots
of U;V;. This consideration is not sufficient for
ensuring closed-loop A-stability. In fact, rewrite
the error sequences &;; as

P
where @ = — and P and S polynomials to be

determined. From (14) one obtains

DQ=£=WT—_DA,

S uv (15)

(¥%)

where the last equality follows from (13). Then,
in order to ensure A-stability is necessary and
sufficient that

P=U"V P, (16)
for a possibly infinite degree polynomial P, € A.
In (16), we have factorized U = U-U*, U+
strictly-Schur and U~ monic anti-Schur and the
same for V. = V~V*. Now, all polynomials P,
and X that satisfy (15) must satisfy equivalently
the following Diophantine equation

U V' PA+DX=W. (17)
The above equation is always solvable because
(U~V~,D) are coprime. Let (Xp, Pjo) the min-
imum degree solution of (17) w.r.t. X, that is
d(X) < 8(U~V ™). Then, the general solution has
the following expression

X = XO - U_V_T )
{ P, = P+ DT. (18)
with T'(d) is a free polynomial. As a consequence,
all admissible and .4-stable closed-loop error maps
&;j can be parameterized in terms of a possibly
infinite degree free polynomial T' € A as

& = EY + U:iV; Xo + UiV; (U-V-T) . (19)

If each EY; is the minimal degree solution, we
know that 8(EY) < 8(U;V;). Moreover 8(X,) <
B(U~V~) and A(E, +UiV; Xo) < OU:V;U-V~).
Then,if T'is a polynormal of degree t we have that

o( U)<a( V7)+0(T) < mo + t.(20)

where mg := max; ; 8(U,V; U~V ™).

The parameterization (19) hinges upon the limi-
tative assumptions (5)-(6). When they don’t hold
true, one can adopt a truncating strategy. Several
equivalent alternatives are possible. A simple idea,
exemplified for (5), consists of finding a polyno-
mial pair (TI(N), TI(N)), with TI(N) of degree lower
or equal to NV, such that
Ny Ni2

—Vz _ ——-V T(N) +dN+1

7
D D D

» (21)

and similarly for (6). Such a polynomial pair
is unique for any N and can be computed as

the minimal degree solution w.r.t. Ti(N) of the
following set of Diophantine equations

DTI(N) + dN'HTl(N) = N11V2 - NIZVI ’ (22)
DTz(N) + dN+1T2(N) = N21V2 - N22Vl ) (23)
DT3(N) + dN+1j:‘3(N) = Nllffz — Noy 01 ) (24)

DT + NPT = NyyUp — Nyl . (25)



Notice that (22)-(25) are always solvable with
A(T™) < N + 1 because (D,dN*+!) are co-
prime for all N. Then, the parameterization (8)
of Lemma 1 becomes

N+1
D

£ =ES) +UViX + EX,  (26)
where Ef]N ) and El(jv ) are the minimal degree solu-
tions (see Remark 1 for details) of the Diophantine
equations (9) and (10) with T; replaced by Ti(N)
and, respectively, Ti(N), 1=1,2,3,4.
Next, by observing that egs. (11)-(12) modify
coherently for all integer N ¢« = 1,2, j = 1,2,
and similarly for one finally concludes that there
exists a single polynomial W, independent of N,
such that
N N+1 7(N) .
—-DE;; - dh +A1E"j + Nij W
U;V;

(27)

Again, the stability issue is resolved by requiring
that
P W-DX

DQ=_=W—’

(28)
is A-stable, viz. by requiring that P = U~V Py,
with P; € A solution of the following Diophantine
equation

UV P+DX=W. (29)
Specifically, let (Pyo,Xo) be the minimal degree
solution w.r.t. X of (29), viz. 8(Xo) < (U~V ™).
Then, the general solution of (29) is given by
X = Xo—U"V~T and P, = Py + DT in the
possibly infinite degree free polynomial T' € A.
Finally, for any integer N, the parameterization
of all admissible and A stable closed-loop error
maps &;; (19) modify as

dN+1

M) .5 - 5(N)
EG" +0:V;Xo - U:V;U~ V=T + ——E{" . (30)

3. SUBOPTIMIZATION

The parameterizations (19) and (30) allow one
to directly construct suboptimization schemes by
imposing that the closed-loop error maps are
polynomials. In fact, the above conditions im-
pose additional constraints to (4) and the cor-
responding solutions are of course sub-optimal.
Then, any arbitrarily tight approximating solu-
tion to (4) can be obtained by solving the follow-
ing finite-dimensional linear programming prob-
lem (SUP-OPT;) for a sufficient large value for
t:=0(T):

min
TER[d]

EW) 4 [ql] (Xo+U~V™T) [V; Vz]
Us

A

k]

whose value is fi;. A convenient choice for N, in

order to have all coefficients of ESJN ) & U,V Xo
influenced by T, is

N=N(t) = .miPQa(U,-Vj U~V™) +9(T).(31)
1,)=1,

Then, by denoting with

iy = “D‘ldN“E(N)HA, (32)
the part of the cost due to truncated amounts a
link with the OPT problem is established by the
following Lemma.

Lemma 2 - Let (A.1) be fulfilled and T denote
a solution of SUB-OPT;. Then, the sequence j;
is non-increasing and

Bt + i 2> i1 + i1 = Hopt, VE20
lim [:Lg = Hopt, lim I]t =0
t—o0 t—o0

Further, the sequence of solutions T'(!) admits a
subsequence T(ts) that converges in the A-norm
(component-wise) to an optimal solution of the
OPT problem as t — oo. If such a solution is
unique, the whole sequence converges to it.

4. SUPEROPTIMIZATION

In order to derive linear programming problems
whose solutions provide a sequence of lower-
bounds to popt, it is necessary to rule out some
constraints from (4). Because one cannot elimi-
nate constraints related to stability, the only pos-
sibility is to relax some structural constraints.
This can be done easily by considering four free
polynomials (T + d'+1T};) instead of a single T in
(19). It is evident that this choice remove some
structural conditions depending on the degrees of
T and T;j. Once such substitutions have taken
place, (19) becomes

& = B + UiV; Xo — Ui Vj(T + d*+1Ty), (33)
with &;; any longer admissible for OPT. A further
simplification can be accomplished by considering
that the closure of the space all polynomials
U(d)T(d) € RA (of possibly infinite degree)
generated by an arbitrary polynomial 7'(d) € RA,
with U(d) polynomial, is given by U(d)*T(d),
where U(d)* denotes the anti-Schur factor of U(d)
with all repeated zeros on the unit circle replaced
by simple zeros (Vidyasagar, 1991). This means
that U(d)*T'(d) € RA if and only if T'(d) € RA.
In particular, U(d)*T(d) polynomial if and only
if T'(d) is a polynomial. As a consequence, one
can usefully consider the following substitutions
in (33)

&ij = EY + UiV Xo + UsV;T + d* Y U VT3, (34)



