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PREFACE

This textbook is an outgrowth of Timoshenko’s two-volume Strength
of Materials, first published in 1930. Whereas the two-volume edition
presents both elementary and advanced topics, the present volume is
considerably abridged and is designed primarily for undergraduate courses
in elementary strength of materials in American colleges and engineering
schools.

‘In this fifth edition, Elements of Strength of Materials represents a
recasting and rewriting of the original abridgment, although.an attempt
has been made to retain the same general approach to the subject that
characterized the original work. This consists primarily in proceeding
gradually from the simplest cases to the more complex ones and relying
on physical and geometrical considerations of deformation to establish
the patterns of stress distribution under various types of loading. This,
of course, characterizes the ‘“‘strength of materials approach’ as contrasted
with that of the ‘“theory of elasticity.” Such an approach may seem old-
fashioned to some, but the authors firmly believe that, for the beginner, it
represents a sounder pedagogy. We must all learn to walk before we at-
tempt to run.

New examples have been added and new sets of problems have been
substituted for the old ones throughout the book. Answers are given to
all problems.

In the first chapter, the ideas of stress and strain within the elastic
range of behavior are treated thoroughly before introduction of the com-
plications associated with nonlinear stress-strain behavior. The second
chapter begins with a discussion of the stress conditions on an oblique sec-
tion of a bar in tension in order that the complete stress-strain diagram
with proportional limit, yield point, ultimate strength, etc., may be better
appreciated. This chapter also contains a section on Plastic Analysis or
Limit Design,

Chapter 3 begins with a discussion of stresses in thin-walled pressure
vessels which serves to introduce the problem of biaxial stress. Analysis
of biaxial stress is then developed in detail and Mohr’s circle is introduced.
This leads logically to a discussion of pure shear, which is essential to a
proper treatment of torsion as taken up in Chapter 4. In the next two
chapters (5 and 6), the question of bending stresses and shearing stresses
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VI PREFACE

in beams is taken up. The first of these contains the fundamentals of
bending theory, and the second treats a number of special topics in bend-
ing of beams. Chapter 7 deals with the general problem of plane stress
and the notion of principal stresses. Applications to principal stresses in
beams and stresses due to combined bending and torsion are fully treated.
Chapter 7 ends with sections on the analysis of plane strain and the use of
strain rosettes.

Chapter 8 is devoted to methods of calculating deflections of beams.
These include the differential equation of the elastic line, the moment-
area theorems, and the method of superposition. Statically indeterminate
beams are discussed in Chapter 9. Since the concept of strain energy has
been developed in earlier chapters, it is natural at this point to discuss
Castigliano’s theorem and its application to statically indeterminate
problems. This chapter ends with a section on limit analysis of statically
indeterminate beams, using the concept of the plastic hinge.

Chapter 10 deals with the theory of columns and has been written so as
to emphasize the rational approach and minimize the attention given to
empirical column formulas. The text proper ends with a chapter on the
mechanical properties of materials. It is hoped that the inclusion of such
material in an undergraduate textbook will serve to give the student a
better appreciation of the importance of the experimental side of the
subject of Strength of Materials.

S. TIMOSHENKO
D. H. Youne
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NOTATION

area
dimensions

distance from neutral axis to extreme fiber
diameter

modulus of elasticity

eccentricity

force

shear modulus

gravitational acceleration constant
height; depth of a beam

horsepower

moment of inertia of area

radius of gyration

polar moment of inertia of area

stress concentration factor

symbol for \/P/EI; spring constant; factor
length

bending moment

normal force

factor of safety; r.p.m.; number
force; load

pressure per unit area; pitch
force; statical moment of area
load per unit length

reaction, radius

radius; radius of gyration

stress resultant

arc length

torque; temperature

thickness

strain energy

strain energy per unit volume
shearing force; volume

velocity

weight; total load

IX




X, Y, Z
X,y 2
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NOTATION

load per unit length; weight per unit volume
forces

coordinates

section modulus

temperature coefficient of expansion; angle
angle

shearing strain; weight density

deflection; total elongation

tensile or compressive strain

slope of elastic line; angle of twist per unit length
Poisson’s ratio

radius of curvature; radial coordinate
normal stress

shearing stress

angle of twist; angular coordinate

angular velocity
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1
Tension, Compression, and Shear: I

1.1 Yntroduction

Various structures and machines — bridges, cranes, airplanes, ships,
etc. — will be found, upon examination, to consist of numerous parts or
members connected together in such a way as to perform a useful function
and to withstand externally applied loads. Consider, for example, the
simple press shown in Fig. 1.1a. The function of this press is to test speci-
mens of various materials in compression. To accomplish this, the speci-
men is placed on the floor of the base A and the end of the screw is forced
down against it by turning the handwheel at the top. This action subjects
the specimen as well as the lower portion of the screw to axial compression
(Fig. 1.1d) and the side members N to axial tension (Fig. 1.1b). It will be
observed also that the crosshead M is subjected to bending (Fig. 1.1¢) and
the upper part of the screw to twist or forsion (Fig. 1.1e). These four basic
types of loading of a member are frequently encountered in both structural
and machine design problems. They may be said to constitute essentially
the principal subject matter of Strength of Materials. In subsequent
chapters we will consider them in the order of their complexity: tension,

t ?
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2 TENSION, COMPRESSION, AND SHEAR: I

compression, torsion, and bending. We will also see later that in many
cases a particular member of a structure or machine may be simultaneously
subjected to the action of two or more of these basic types of loading in
combination. In such cases, the problems of analysis and design of the
member can become somewhat more involved.

Analysis and design of any structure or machine like the press in Fig. 1.1
involve two major questions: (a) Is the structure strong enough to with-
stand the loads applied to it and (b) is it stiff enough to avoid excessive
deformations and deflections? In Statics, the members of a structure were
treated as rigid bodies; but actually all materials are deformable and this
property will henceforth be taken into account. Thus Strength of Materials
may be regarded as the statics of deformable or elastic bodies. For example,
it is clear that compression of the specimen in Fig. 1.1a can be increased
only by advancing the screw of the press downwards through the crosshead
M. This relative displacement between two parts of the machine is partly
accounted for by shortening of the specimen and the lower part of the screw
and partly by extension of the side bars N as well as some bending de-
flection of the crosshead M. Thus, the amount of compressive force on the
specimen that will correspond to one turn of the handwheel will depend
upon the relative stiffness of the various members of the machine.

Both the strength and stiffness of a structural member are functions of its
size and shape and also of certain physical properties of the material from
which it is made. These physical properties of materials are largely
determined from experimental studies of their behavior in a testing ma-
chine. The study of Strength of Materials is aimed at predicting just how
these geometric and physical properties of a structure will influence its
behavior under service conditions. The applications of the subject are
broad in scope and will be found in all branches of engineering. We begin
with a study of the simplest type of loading, namely, axial tension or com-
pression of a straight prismatic bar.

1.2 Internal Force; Stress

In Fig. 1.2, a prismatic bar AB is subjected to axial tension by the
action of a vertical load P applied at B and acting along the axis AB of the
bar, the proper weight of which is neglected. This action on the bar
stretches it slightly and also tends to pull it apart, i.e., to produce rupture.
This tendency to rupture is resisted by internal forces within the bar, i.e.,
by actions and reactions between its various particles. To visualize these
internal forces, imagine that the bar is cut by a section mn perpendicular to
its axis and that the lower portion is isolated as a free body (Fig. 1.2b). At
the lower end of this portion of the bar, the external force P is applied. On
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the upper end are the internal forces represent-
ing the actions of the particles of the upper part
of the bar on those of the lower part. These
forces are continuously distributed over the
cross-section mn. In dealing with such distri-
buted forces, the intensity of force, i.e., the force
per unit area, is of great importance. Visualiz-
ing the bar as made up of a bundle of longi-
tudinal fibers, each of which carries its fair
share of the load, it appears reasonable to
assume, in this case, that the distribution of
forces over the cross-section will be uniform.*
From the condition of equilibrium of the free
body (Fig. 1.2b), it is seen that the resultant of
this uniform distribution of internal forces must
be equal to the external load P. Thus, if A de-
notes the cross-sectional area of the bar and
o, the force per unit area, we have S = ¢4

= P, from which
P

0-=Z.

7,

m-

(a)

]—

(b)

Fic. 1.2

(1.1)

This force per unit area is called the stress in the bar; the total tension
S = oA is sometimes called the stress resultant. Force is usually measured
in pounds and area in square inches so that stress has the dimension of

pounds per square inch, denoted by ‘“‘psi.”

e—

F1c. 1.3

(a)

D77

Fig. 1.4

S=cA

(b)

*At ({ross—sections near the junction points A and B, the distribution may be somewhat
non-uniform; but this effect is very localized and will be ignored for the present. For

further discussion see Art. 2.5, p. 46.
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In order that the applied load P in Fig. 1.2 will actually induce a uniform
stress o over each cross-section of the bar as assumed above, its line of
action must pass through the centroid of each cross-section, i.e., P must
act along the centroidal axis of the bar. To prove this, consider an arbitrary
shape of cross-section as shown in Fig. 1.3 and let dA be any element of area
therein. Then for the assumed uniform stress distribution, ¢ is constant
over the cross-section and the element of force acting on dA is sdA, normal
to the plane of the section. The resultant of these parallel forces is

S = [sda = afdA = oA, ()

also normal to the section.

The point of application of the stress resultant S can be found from the
theorem of moments: namely, the moment of the resultant about either of
the coordinate axes z or y must equal the algebraic sum of moments of the
elemental forces cdA about the same axis. Thus, denoting by Z and 7 the
coordinates of the point of application of the resultant, we have

cAZ = [z0dA = fdi - gda,
oAy = fyadA - a[ydA = oAy,

where z. and y, are the coordinates of the centroid C of the cross-section.
From egs. (b), it is seen that Z = z, and § = y.. Thus for a uniform stress
distribution, the stress resultant S acts through the centroid of the cross-
section. Furthermore, it can be seen from Fig. 1.2b that the force S must
be collinear with the applied force P. Therefore, P can produce a uniform
stress distribution over each cross-section only if it acts through their
centroids.*

All of the foregoing discussion applies also to the case of a short post or
strut subjected to a compressive load P as shown in Fig. 1.4. Here also the

(b)

", 7 /

| J
o) |we;

I = ]
J\Pin—/

(a) (b)

Fia. 1.5

*A tensile load P that does not act along the centroidal axis of a bar will produce bend-
ing as well as tension of the bar. This case is discussed in Art. 10.1, p. 264.



INTERNAL FORCE; STRESS 5

load P must act along the centroidal axis of the post to produce the uniform
compressive stress ¢ indicated in Fig. 1.4b. In the case of compression
members, this condition is sometimes difficult to fulfill, so that the com-
pression of long slender struts or columns requires special consideration
which will be taken up later in Chapter 10.

Direct Shear. Referring again to Fig. 1.2, let us consider now in some
detail the connection between the tension member A B and the ceiling at its
upper end. Clearly, in the interests of good design, this connection should
be strong enough to develop the full load-carrying capacity of the bar AB
itself. An enlarged detail of this connection is shown in Fig. 1.5a, where it is
seen that the load P on the tension member must be transmitted to the fork
by the horizontal pin connecting the two parts. A free-body diagram of this
pin is shown in Fig. 1.5b and it is seen that the pin is primarily in a condition
of shear which tends to cut it across the sections mn.* Assume now that the
internal shearing forces resisting this tendency are uniformly distributed
over each of the cross-sections mn. Then denoting by 7., the shear force
per unit area, i.e., the average shear stress, we see that equilibrium conditions
of the middle portion of the pin require that 7.4, = P, from which

Tav == %, (1.2)

where A, is the total area in shear — in this case, twice the cross-sectional
area A of the pin.

Since shearing conditions are never as simple as assumed above, it must
be realized that the average shear stress as calculated from eq. (1.2) may be
only a rough approximation to the actual stresses that exist in the material.
Nevertheless, lacking any more exact knowledge of the true stress distribu-
tion, the designer is often forced to use this simple concept of average shear
stress as a basis for design.

In dealing with various kinds of machines and structures, the engineer
frequently encounters members subjected to simple direct tension, com-
pression, or shear as discussed above. The general problem of design of
such members consists in proportioning them so that they can safely and
economically withstand the loads that they have to carry. As a basis of
doing this, many materials have been tested in the laboratory to establish
their strength or resistance to rupture under various types of loading and
thereby establish allowable or safe working stressest to be used in design.

*There is also some bending of the pin, but if the clearances are small this will be of
secondary importance. Only the shearing action will be considered in the present dis-
cussion.

1The establishment of working stresses is a very complex question which will not be
discussed in any detail at this point. For further discussion, see Art. 2.2, p. 32.
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An allowable working stress is usually taken as 1/n times the value of the
stress at which failure of the test specimen took place. Thus in using such
a working stress, the designer has a so-called factor of safety n to allow for
overloading or other unforeseen adverse effects. Using these somewhat
arbitrarily assigned working stresses together with egs. (1.1) and (1.2), the
designer can determine the proper dimensions for the various members of a
machine or structure subjected to the action of given loads. Or, if the
structure has already been built, he can establish safe values for the allow-
able loads in a similar manner.

EXAMPLE 1. A vertical load P = 5000 1b is supported by two inclined steel wires
AC and BC as shown in Fig. 1.6. Determine the required cross-sectional area A of
each wire if the allowable working stress in tension is o, = 10,000 psi and the angle
6 = 30°.

soLuTION. When the load P is applied to the ring, each wire is subjected to
tension and therefore exerts on the ring a force S directed along the axis of that wire
as shown in Fig. 1.6a. Actually, under tension, the wires stretch slightly, so that
after the load P is applied, the angles of inclination 8 will be slightly greater than
30°. However, in computing the magnitudes of the forces S, we will neglect this

Fic. 1.6

slight change in configuration of the system due to deformation and assume in Fig.
1.6a that each force S is inclined to the horizontal by 30°. Thus, the corresponding
closed triangle of forces in Fig. 1.6b is equilateral, and we conclude that
S = P = 5000 lb. Then, from eq. (1.1), the necessary cross-sectional area of each
wire is

A=—=—— =05sqin.

\
=" ExAMPLE 2. The piston of a deep-well pump is operated by a vertical prismatie
steel rod of length I = 320 ft attached to a crankat its upperend as shown in Fig.1.7.
Determine the extreme values of tensile and compressive stress o in the rod if the

resistance on the piston during the downstroke is 200 1b and during the upstroke is



