

THE EARTH

A STUDY AND SYNTHESIS OF WORLD SCENERY

LESTER C. KING

Professor of Geology University of Natal, Durban, South Africa

OLIVER AND BOYD EDINBURGH AND LONDON

OLIVER AND BOYD LTD

Tweeddale Court Edinburgh 1 39A Welbeck Street London W.1

First Published . . . 1962

© 1962, Lester C. King

PRINTED IN GREAT BRITAIN
BY OLIVER AND BOYD LTD., EDINBURGE

INTRODUCTION

Our realm of study is the outer part of the earth, and our subject is its evolution, principally from the Mesozoic era to the present day. In a spirit of patient enquiry we seek to find order, system and if possible explanation amid the major topographic features of the globe.

The synthetic study of such a realm has required field work upon a scale that only modern transport could have provided, for very early in the research a principle emerged that is more important then the research itself; that while the geologist may often be in error the Earth is never wrong. It was necessary for the author to see as much of the earth's surface as possible, yet not to interpret it in terms of preconceived philosophies; often to sit passively upon hills just letting the scenery "soak in" and teach the beholder—when he was sufficiently humble.

But even in this age no man can cover the entire earth and recourse had to be made to libraries for further information. This has exposed fearful inadequacies in the coverage of certain regions, even admitting the insufficiency of sources available to the writer. For these and other reasons no attempt has been made to provide even coverage for the earth's surface. Much useful data has been assembled in F. Matchatschek's Das Relief der Erde (Borntraeger), and the reader may be well advised to proceed with the present volume in one hand and Matchatschek in the other. Students are further recommended A. K. Lobeck's Physiographic Diagrams (Columbia Geographical Press) of the several continents.

Very early, an optimum of about 500 pages of text was set for the book. To approach this the original manuscript has been cut time and again, and many topics have been omitted on the assumption that the reader was already sufficiently familiar with them. Always the attempt has been to provide data that are less familiar but withal to adduce a series of comparative examples illustrating principles that the reader could then apply to his own experience.

The research is set out in no spirit of idle iconoclasm but in a bright seeking of truth from the earth itself, and if at the end our path is strewn with broken, though cherished, hypotheses—a cooling, shrinking earth, growing continents, immobile continents, compressional mountain ranges, cyclic denudation by downwearing and others—why so much the better for Geology, so long as the new hypotheses explain the facts of earth structure more truly. Their turn to retire gracefully will come with equal certainty.

My gratitude is here expressed to the University of Natal which has granted special

study leave for field work on a number of occasions. Also, the University and the Council for Scientific and Industrial Research have contributed towards the cost of preparing the illustrations. Credits for figures have been scrupulously assigned, though I have not always been able to contact their authors for permission to publish. To them also my thanks are due. The courtesy of the following publishers is also acknowledged: Geological Society of America, Geographical Review, American Association Petroleum Geologists, Messrs. Harper and Brothers, Geological Society of London, Scottish Geographical Society, Messrs. Pergamon Press, Revue Geographic Physique et Geologic Dynamique, American Museum of Natural History, New Zealand Geological Survey, Illinois State Geological Survey, Columbia Geographical Press, (C. S. Hammond and Co.).

Lastly, this proface would be incomplete without acknowledgement of the deep enjoyment that I have derived from the research: not only from the lands and peoples that I have visited (and may hope to visit in the future), but also in my home. Into a tiny study roughly ten feet square have entered mighty vistas—sunrise upon great plains, tangled tropical jungles, towering snow-clad mountains and tempestuous seas. It has been fun to spend an occasional weekend in the Andes, or snatch a rare visit to Cambodia before dinner. And though I have not been exempt from "language difficulties" these foreign travels at home have usually been without "let or hindrance" which is much to be appreciated in these official-ridden days.

LESTER KING

CONTENTS

PART A

THE BASIS OF SCENERY: THE BEHAVIOUR OF THE EARTH'S CRUST

CHAPTER		PAGE
I	THE STRUCTURE OF THE EARTH'S CRUST	3
	Genesis	3
	Fundamental Rock Types	4
	The Layered Crust	4
	Properties of Sub-crustal Matter	10
	Isostasy and Isobary	14
	Crustal Temperatures	20
	Igneous Action	21
	Radiothermal Energy of the Rocks	23
	Sub-crustal Convection Currents	24
	Continental Drift	26
	Some Dead Wood: a Digression	30
	Palæogeography	33
	Model of the Earth	35
П	THE UNITY OF GONDWANALAND DURING THE LATE-	
	PALÆOZOIC AND MESOZOIC ERAS	37
	Late-Palæozoic and Mesozoic Continental Deposition in	
	Gondwanaland	37
	Late-Carboniferous Deposition	38
	Early Permian	45
	Late Permian	49
	Triassic Deposition	53
	The Jurassic Regimen	57
	Cretaceous Fragmentation of Gondwanaland	59
	Conclusion	61
III	CONTINENTAL STRUCTURE: (A) SHIELDS	63
	Altitudes of Continents	63
	Major Continental Structures	64
	The Shield of Africa	72
	Shields of South America	74
	Peninsular India	76
	Antarctica	78
	The Foundations of Australia	80
	The pre-Cambrian Grain of Gondwanaland	81
	The Laurentian Shield	81
	The Foundations of Europe	84
	The Angara Shield	85
	The Chinese Nuclei	87

CONTENTS

CHA	PTER	PAGE
IV	CONTINENTAL STRUCTURE: (B) MOBILE WELTS	90
	Mobility of the Earth's Crust	90
	Orogenic Mountain Types	90
	Geosynclines	93
	The Lithogenic Phase	94
	Facies	97
	The Orogenic Phase	101
	Igneous Activity in Geosynclines	109
	Geotectonic Environment of Geosynclines	113
	The Manner of Failure	115
	Deformation of the Basement during Orogenesis	121
	Tectogenes The Physical Nature of Tectogenes	124
	The Orogenic Cycle	130
	The Grogethic Cycle	130
	PART B	
	THE DEVELOPMENT OF CONTINENTAL SCENERY:	
	DEGRADATION AND AGGRADATION	
v	THE STANDARD CYCLE OF DENUDATION	135
	The Manner of Landscape Evolution	135
	The Flow of Water over Landsurfaces	136
	Mass Movement of Rock Waste over Landsurfaces	140
	The Standard Hillslope	142
	Pediplanation (Scarp Retreat and Pedimentation)	144
	Pediplanation versus Peneplanation	147
	The Influence of Bedrock	149
	The Influence of Climate on Landscape-Making	152
	The Cycle Concept	154
	The Standard Epigene Cycle of Erosion (Pediplanation)	154
	Some Consequences of Pediplanation Addendum: Glacially Denuded Landscapes	162 164
7		
VI		166
	Deposition vis-à-vis Denudation Loess and Parna	166 168
	Soils and Duricrust	169
	Soils in Succession	177
	Modifications due to Frigidity	179
	Volcanic Accumulations	185
	Depositional Landscapes in Time	186
VI	TECTONICS AND LANDSCAPE EVOLUTION	187
• •	Tectonic Movement and Landscape	187
	Interruptions to the Cycle of Erosion	188
	Polycyclic Landscapes	189
	Interruption by Differential Movements	191
	Warped Divides	197
	Denudation on the Flanks of Cymatogenic Arches	200
	Basin Warping and Filling	203
	The Paris Basin	211
	Fossil Landscapes	218
	Pericontinental Deposition	218

ix

		D. C.
CHAPTER	THE AGES OF LANDSURFACES	PAGE 22I
AIII	Methods of Dating	221
	The Ages of Continental Landsurfaces	223
8	The Pattern of World Landscapes	224
	Some Doubts Allayed	227
	Mapping of Cyclic Landsurfaces	228
	Landform Analysis from Topographic Maps	228
for	The World's Denudational Cycles	232
	PART C	
	THE SCENERY OF THE PLAINLANDS	
IX	THE GEOMORPHOLOGY OF AFRICA	235
	The Cyclic Episodes of African Geomorphology	235
	The Face of Modern Africa	243
	The Geomorphology of Africa	246
	The Carboniferous-Permian (pre-Karroo) Landsurface and the	
	Triassic (intra-Karroo) Landsurface	246
	Post-Karroo Land Movements	249
	The Jurassic "Gondwana" Planation and the Cretaceous	
	"post-Gondwana" Cycle of Erosion	250
	Cainozoic Cyclic Landsurfaces in Southern Africa	265
	The Kalahari	268
	Dating of the Cainozoic Landscape Cycles	270
	Cainozoic Events in Congo Republic	272
	Cainozoic Landsurfaces of Central and East Africa	275
	Cainozoic Denudation in Abyssinia and Arabia	282
	The Sudan, Nigeria and the Guinea Highlands	283
	The Sahara	286
	The Plio-Pleistocene Cymatogeny and ensuing Landforms of	
	Southern Africa	288
	The Rift Valley System of Central Africa	293
	Quaternary Events in Congo Republic	295
	Cymatogeny and Ensuing Denudations in East Africa	296
	Cymatogeny in Syrabia	299
	Quaternary Events in North Africa	299
	The West African Coastal Monocline	300
,	Conclusion	300
X	CYCLIC LANDSURFACES IN THE REMAINDER OF	980
	GONDWANALAND	302
	South America	302
	Denudational Cycles in Brazil	303
	Red Sands, Earths and Dusts in Brazil	304
	The Succession of Alternating Denudational and Aggradational	
*	Landscapes The Carboniferous Glaciated Landscape and the Trigonia December	308
	The Carboniferous Glaciated Landscape and the Triassic Desert "Gondwana" and "post-Gondwana" Cyclic Denudations in	309
	South America	310
	The Sul-Americana and later Cainozoic Landscape Cycles	314
	Cymatogeny and Quaternary Landscape Development in Brazil	318
	Quaternary of the Argentine	222

x

CHAPTER		PAG
	Antarctic Contribution	32
	Palæozoic and Mesozoic Landsurfaces of India	324
	Cainozoic Landsurfaces of India and Ceylon	320
	Post-Cainozoic Deformation and Drainage in Peninsular India	32
	Australia: The Continent	328
	The Permo-Carboniferous Glaciated Landscape	331
	"Gondwana" and "post-Gondwana" Landscapes in Australia	331
	The Great "Australian" Denudation Cycle	335
	Late-Cainozoic Landscapes in Australia	341
	The Kosciusko Cymatogeny and subsequent changes of	34
	Landscape	245
	Conclusion	345
	Conclusion	352
ΧI	NORTH AMERICAN PLAINLANDS	
AI	Introduction	353
	Denudation Chronology	353
		353
	Erosional Bevels in the Appalachian Region	356
	The Canadian Shield	359
	The Great Plains	361
	Pleistocene Landscape of the Interior	364
	The Central Lowland	365
5.	Pleistocene Glaciation	368
	Greenland	369
	Conclusion	370
	CVICAL TO A LAND CAND DIA CORO. THE DAVID CORD. LAND.	
XII	CYCLIC LANDSURFACES IN EUROPE AND ASIA	371
	Landscape Cycles of Western Europe	371
	Geomorphology about the Central Plateau of France	372
	Landscape Cycles of the Mediterranean Border and the Paris Basin	379
	The Spanish Meseta	381
	The Ardenne	382
	The Bevelled Massifs of Central Europe	385
	Blueprint for Britain	386
	Geomorphic Outline in Scandinavia	393
	European Russia	395
	Lowlands of Western Asia	397
	The Morphology of Inner Asia	398
	Siberian Plateaus	401
	Landsurfaces of Mongolia	405
	Landscape Cycles in China	410
	Conclusion	415
	PART D	
	THE SCENERY OF THE MOUNTAINLANDS	
XIII	PALÆOZOIC MOUNTAIN CHAINS	419
	Introduction	419
	Palæozoic Mountain Systems of Laurasia: The Appalachian-Ural	
	Welt	421
	Caledonian-Greenland Welt	428
	Laurasian Circumferential Welt	429
	Palæozoic Mountain Systems of Gondwanaland	437
	Old Mountains in New Scenery	448

CHAPTER		PAGE
XIV	THE MOUNTAIN RANGES OF MESOZOIC AND	
	CAINOZOIC TIME	450
	Distribution of Mesozoic and Cainozoic Mountain Ranges	450
	The Circumvallation of Gondwanaland	451
	The South American Cordillera The Mountains of West Antarctica	453
	The Structure of New Zealand	458
	New Caledonia	460 467
	New Guinea	467
	The Himalaya	469
	The Mountains of Iran	474
	The Gondwana Circumvallation in the Eastern Mediterranean	7/7
	Region	476
	The Atlas Mountains	478
	The Circumvallation of Laurasia	482
	The Cordillera, Rocky Mountains and Coast Ranges of North	
	America The Circumvallation in Eastern Asia	483
	South-East Asia	494
	The Yunnan-Karakoram Mountain Belt and the Tibetan Plateau	498
	The Circumvallation in Europe	500
	Conclusion	502 504
	Conclusion	304
	•	
XV	MODERN MOUNTAIN RANGES	506
	Modern Mountain Ranges	506
	The Modern Andes	507
	Antarctica	511
	The New Zealand Ranges	511
	New Guinea and the Solomon Islands	514
	The Modern Himalaya	515
	From Asia into Europe	517
	Cyclic Landsurfaces in the Balkans The Modern Atlas Mountains	518
	The Mountains of Western North America	520
	The Far East during Quaternary Time	520
	The Plateau of Tibet-Sikang-Tsinghai	526
	The Modern Alps	527 529
	Conclusion	530
	Summary and Correlations	531
	2 11. 11. 11. 11. 11. 11. 11. 11. 11. 11.	33-
	DADE D	
	PART E	
	THE OCEANIC BASINS	
XVI	FORMS AND FEATURES OF OCEANIC BASINS	535
	The Oceanic Basins	535
	The Floors of the Oceans	536
	Continental Shelves and Slopes	537
	Submarine Canyons	540
	Ages of Continental Shelves	542
	Geomorphology of Continental Shelves	547
	Shelves of the Continents	550

CONTENTS

CHAPTER		PAG
181	Seamounts and Guyots	559
	Island Types	558
	Island Arcs	559
	The Great Suboceanic Ridges	563
	Rock Constitution of Suboceanic Ridges	566
	The Pattern of Suboceanic Ridges	571
	The Importance of the Cretaceous Period	571
XVII	THE ATLANTIC, ARCTIC AND INDIAN OCEANIC BASINS	578
	Age of the North and South Atlantic Basins	578
	The North Atlantic Basin	579
	The Gulf of Mexico	584
	The Caribbean Region	586
	The South Atlantic Basin	592
	The Scotia Arc	593
	The Mediterranean Sea	595
	The Arctic Ocean Basin	595
	The Indian Ocean Basin	598
XVIII	THE PACIFIC BASIN	601
	The Uniqueness of the Pacific	601
	The Andesite Line	601
	Pacific Islands	603
	The Pacific as a Petrographic Province	606
	The Floor of the Pacific Basin	608
	Sedimentation within the Pacific Basin	609
	The North-eastern Pacific Quadrant	610
	The Aleutian Arc	612
	The South-eastern Pacific Quadrant	615
	The North-western Pacific Quadrant, including Indonesia	617
	The Marianas Arc and the Philippine Basin	619
	The East Asiatic Ocean Deeps	622
	The North-western Pacific Basin	624
	The South-western Pacific Quadrant	626
5	The Pacific Realm	631
	PART F	
	REVIEW	
XIX	TOWARDS A MODEL OF THE EARTH	60=
AIA	The Enquiry	635
	From Surface Data	635
	Cymatogeny and Isostatic Anomalies	635 638
	The Time Factor	643
	The Source of Crustal Activity	643
	The Nature of the Subcrust	
	The Rôle of Occluded Volatiles	644 646
	Continental Drift Again	650
	The Last Word	653
	A AND AND TO VALLE	~33
	SELECTED BIBLIOGRAPHY	655
	INDEX	68 r

PART A

THE BASIS OF SCENERY: THE BEHAVIOUR OF THE EARTH'S CRUST

CHAPTER I

THE STRUCTURE OF THE EARTH'S CRUST

Genesis. Fundamental Rock Types. The Layered Crust. Properties of Sub-crustal Matter. Isostasy and Isobary. Crustal Temperatures. Igneous Action. Radiothermal Energy of the Rocks. Sub-crustal Convection Currents. Continental Drift. Some Dead Wood: a Digression. Palæogeography. Model of the Earth.

GENESIS

"In the beginning, the earth was without form and void." It was born of a heavenly body about 4,500 million years ago; and for a long period thereafter no record remains of earth's nature or of its behaviour. But more than 3,000 million years ago rocks existed, physically and chemically similar to sedimentary rocks that are forming today, which suggests that geological and meteorological conditions at the surface of the globe had then stabilised and were similar to those now prevailing.

If sedimentary rocks were forming, then scenery existed, with mountains and valleys and plains and deltas, and a primeval ocean beating upon a primeval shore. The aspect of those early lands was stark, for the terrains were devoid of life and the transition from one landform to another, from rocky hill to gravel plain or desert dunes, was abrupt without true soils or plant cover to smooth out the contours. Everywhere the aspect of the lands was such as we now find only in the great deserts—the Sahara, the Mohave or the Namib.

Of these early landscapes no vestige remains and we shall consider them no further, but ever since there has been scenery, and the earth's face has been remade from each geological age to the next as global forces have periodically elevated new regions into mountains which in turn have been torn down and levelled into plains by the forces of erosion. The rival tectonic and denudational powers, predominantly constructional and destructional respectively, share in fashioning the surface of the solid globe and their constant interplay forms the theme of this book.

Although most of our scenic study, as developed in the sequel, deals with landscapes which have existed only since the Jurassic period at earliest, we must never overlook the long processions of kaleidoscopic landscapes that have evolved throughout earlier geologic time; for the structural traits and limitations inherited from earlier periods frequently influence modern scenic evolution. Thus the Appalachian folds of Palæozoic time still control the ridge-and-valley topography of that province in North America; and in my own sub-tropical city of Durban visitors are frequently taken to see the glacial pavements polished by glaciers of Carboniferous age, now being exhumed from beneath

thick Dwyka tillite by modern erosion or by human activities. Scenic studies must therefore often take cognizance of geologic events that long precede the development of modern landscapes.

We shall first consider in this chapter the nature and behaviour of the earth's crust, which constitutes the very basis of scenery.

FUNDAMENTAL ROCK TYPES

The materials of the earth-body are rocks. Of the three main categories of rocks—igneous, sedimentary and metamorphic—the second and third are patently remade from previous rocks, so that only igneous rocks can be regarded as primary or in a pristine state. Even so, researches upon "granitization" have shown that much supposedly primary igneous rock is earlier rock-material that has been plutonically metamorphosed even to the stage at which refusion has occurred (Sederholm 1923, 1926; Read 1955; Reynolds 1949, 1958). Whether any primary igneous rock (in the strict sense) is now visible at the earth's surface may be doubted. The most likely examples are among the plateau basalts and peridotite intrusions. But at greater depths within the crust the proportion of pristine igneous matter may increase.

Natural division of igneous rocks into three distinct chemical groups acid, basic and ultrabasic, represented respectively by granite or granodiorite, gabbro (basalt) and peridotite, is widespread. Each type has its own characteristic mode of occurrence and appears distinctively in association with certain tectonic conditions (Chapters I, II, IV). In a general way too, each type is associated with certain levels in the earth's crust; granodiorite in the high-standing continental masses, basalt at the level of the ocean floors and beneath the continents, while peridotite exists typically at still greater depths. All igneous rock types other than these three are developed only to a minor extent, and many are plainly derived by magmatic differentiation or assimilation from one or other of the three main types.

The distinctive importance of these three types has promoted enquiry whether they represent three primary magmatic types separated one from another very early in the earth's cooling history, or whether they may be derived from one another by processes of magmatic differentiation acting progressively throughout geological time to produce ever greater segregation. Abundant evidence (Tyrrell 1926) leads to the conception of acid and basic magma types as distinct throughout known geologic time. To this, Hess and his co-workers (1932) have added primary peridotite magmas which they regard, indeed, as the principal heat-bringers of all igneous activity.

THE LAYERED CRUST

The earth is a globe, and its radial structure is a product partly of its original composition and partly of processes active during geologic time. The bulk of the earth-body (the

mantle) is believed to consist of olivine or peridotite, about which is a thin envelope of basic material like basalt. In the continents appears a light acid or granitic portion. Layering is concentric according to density. The outermost layers behave towards stresses of short period as though rigid, and are termed the earth's crust. Below this the earth-body is apparently weak for hundreds of kilometres, material even in the crystalline state being deformed plastically (p. 12). The crust is relatively thin, its base, known as the Mohorovičić discontinuity, being situated at an average depth of about 35 Km. beneath the continents and of 5 Km. beneath the oceans. Sharp downwarping of the "Moho" is thus characteristic of continental margins (Fig. 1).

Much information upon the structure of the outer earth has been derived by analysis of both natural and artificial earthquake waves transmitted through it. Earthquakes originate at any level from the surface down to depths of 700 Km. and this

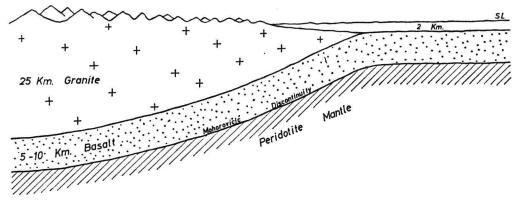


Fig. 1. Simple interpretation of a crustal section at the margin of a continent.

affords a classification of shocks into: Normal earthquakes originating above a depth of 100 Km., Intermediate shocks from that depth down to 300 Km., and Deep-Focus earthquakes known to originate from between 300 and 700 Km. The great majority of shocks belong to the shallow class, and are tectonic in origin, often being demonstrably connected with present faulting or volcanic activity. The intermediate shocks are generally associated with zones of Cainozoic folding and faulting. The deep-focus earthquakes, which may be connected with early-Cainozoic or late-Cretaceous events about the Pacific border are registered from three regions only, the Mediterranean, the island arcs of the western Pacific and from beneath Andean South America. In these regions they are associated with abundant normal and intermediate shocks in such a way that all could be thought of as originating on deep-reaching shear-zones extending from the Pacific side towards and beneath the landward areas. Benioff (1954), who points out that stress may accumulate even in the deep zones for more than a decade, has interpreted the shears as compressional but evidence cited later in connection with island arcs suggests rather a tensional origin (Fig. 2).

The structure of continents, as deduced from the passage of earthquake waves, has been expressed by Gutenberg and Richter (1951): "The typical continental structure consists of a series of layers, the uppermost of which is of the sedimentary rocks (including metamorphosed sediments). The elastic constants within this layer, as well as its thickness, are subject to much local variation. Over large areas the sediments are completely absent, whereas in deep basins of geosynclinal character they may extend to depths over 15 Km. Where the sediments are absent, the exposed rocks are usually granitic (basaltic in volcanic regions); moreover in many localities granitic rocks are known to underlie the existing sediment. Investigations still in progress indicate that the velocity of longitudinal waves in that upper part of the continental crust which is commonly called the 'granitic layer' increases from about 6 Km./sec., near the surface to (locally) as much as $6\frac{3}{4}$ Km./sec., at a depth of roughly 10 Km. and possibly

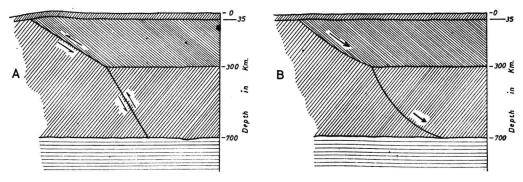


Fig. 2. Compressional (A) and Tensional (B) interpretations of earth structure from records of shallow, intermediate and deep earthquake foci. (A) after H. Benioff. (B) Reinterpreted.

decreases below this to about 6 Km./sec. This decrease may be attributed, at least partly, to an effect of increasing temperature on the moduli of elasticity. Most of the earthquake foci seem to be in this low-velocity layer ".

"Below the 'granitic layer' one to three crustal layers have been identified. Their thicknesses and elastic properties differ notably in the various regions. It has been suggested that in this intermediate layer (or layers) the material is basaltic. The lower boundary of these layers is the Mohorovičić discontinuity."

Estimates, based on seismic analysis, of the thickness of the granitic crust, and of the whole continental thickness, have been given by Gutenberg (1936) (Table I).

Analysis of trans-oceanic earthquake waves (Angenheister 1920) reveals the floor of the deep Pacific Basin as devoid of granite—evidently from primordial time. Its floor is heavily basaltic, perhaps of an oceanite type, though Tilley (1951) has preferred tholeite for the actual floor with more olivinic types below. An earthquake shock in the Aleutian Islands, recorded at Lwiro in the Belgian Congo was noted by Kovach (1959) to have complementary paths that were almost entirely continental and oceanic (Fig. 3).