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PREFACE

This book has three main aims. Firstly, it is intended to provide a
thorough and self-contained introduction to the use of group
theory in the calculation and classification of electronic energy
bands in solids. It is hoped that this will be useful both for those
who intend to calculate energy bands and for those who have to
interpret calculations and relate them to the experimental situation.
The book has been lald put in such a way as to assist in making the
; i&'Matter group. In particular, the theory
! antdim'imechanics is developed from

“ﬁtst ‘five chapters only the absolutely
essentlaﬂ group reticd adﬁcepts needed for symmorphic space
groups are 1& ﬁceﬁ‘ th r@ow difficult concepts being treated
later. To dlspel the slig f a.bs’eract air which sometimes surrounds
this subject, a nt veffcohcrete examples are treated in detail.
The second aim has been to make a close study of the more ad-
vanced aspects of the subject, again treating all the more difficult
points in some detail. These aspects include non-symmorphic space
groups, time-reversal symmetry, and double groups and spin-orbit
coupling. The third and final aim has been to give a summary of
the considerable recent work on the subject.

It is a pleasure to acknowledge the fruitful discussions the
author has had with Professor E. P. Wohlfarth both concerning
this book and topics dealt with in it, and also the careful typing by
Mrs C. G. MacArthur of the manuscript.

J. F. CORNWELL
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LIST OF MOST IMPORTANT SYMBOLS

Only the symbols that are very frequently used are listed here. The
brief descriptions of them are supplemented by a note of the
section or equation in which they are defined. Many other symbols
are used from time to time, and are defined as they occur. The
notation for matrices is described in appendix 4.

a,,a,,a; Basic lattice vectors of the crystal (ch. 1 § 3.1)

by, b,, b, Basic lattice vectors of the reciprocal lattice [eq. (4.6)]

C,; Proper rotation through 2n/r about the axis Oi
(ch.1§1)

o Generalized proper rotation through 2n/n about the

axis Oi (ch. 8 § 3, appendix 2)

€, ith class of a group (ch. 1 § 2.4)

E Identity transformation (ch. 1§ 1)

E Generalized identity transformation (ch. 8 § 3, ap-
pendix 2)

E, (k) nth energy level at point k (ch. 4 § 6). (The suffix # is
sometimes omitted)

9 In purely group theoretical developments, such as
in ch. 1 (except § 3), ch. 2 and ch. 6, merely
denotes a group. In ch. 3 ¢ denotes the group of
the Schrodinger equation, and in all other places
% denotes more specifically the space group of
the crystal

g, The point group of the space group ¢ (ch. 1 § 3)

G (k) The group of the wave vector k (ch. 7 § 1)

g, (k) The point group of the wave vector k (ch. 5§ 1)

xiii



o(T), 0(T)
P(T)

ylr:m

R, R(T)
R, R,,...

* NN g

g

T (k)

u, u(R)

1 TR

"LIST OF SYMBOLS

Hamiltonian operator

“Inversion operator (ch. 1§ 1)

“Ger:i;“eralized inversion operator (ch. 8 § 3, appendix 2)

i Reciprocal lattice vector [eq. (4.13)]
“Allowed wave vector [eq. (4.8)]
4 Vedtors of the star of k (ch. 5§ 1, ch. 7§ 1)
‘Number of vectors in the star of k

Spinor transformation operators (ch. 8 § 3)

Scalar transformation operator (ch. 3 § 2)

Projection operator [eq. (3.22)]

Transformation matrix [eq. (1.1)]

Transformation matrices generating star of & (ch. 5
§l,ch.7§1)

Subgroup of ¥

A transformation (ch. 1 § 1)

A generalized transformation (ch. 8 § 3)

A translation. (This symbol frequently appears with
subscripts or superscripts attached)

Lattice vector of the crystal [eq. (1.9)]

The subgroup of pure primitive translations of the
space group ¢ (ch. 1 §3.1,ch. 4§2)

Subgroup of 7 corresponding to k (ch. 7 §2, ch.9
§9.1)

SU, matrix corresponding to proper rotation R
(ch.8§2)

Matrix of a representation (ch. 2 § 1). (This symbol
frequently appears with superscripts attached)
Character of representation (ch. 2 § 5). (This symbol
frequently appears with superscripts attached)
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CHAPTER 1

BASIC CONCEPTS

§ I. COORDINATE TRANSFORMATIONS

This book is concerned with the study of the symmetry properties
of functions having physical significance. These can be described
by stating how the functions transform under coordinate trans-
formations.

Consider the following example of such a transformation.
Suppose that Ox, Oy, Oz are three mutually perpendicular axes,
and Ox’, Oy’, Oz’ are another set of mutually perpendicular axes
with the same origin O, which could, for example, be obtained
from the first set by a rotation about some axis through O. Suppose
that (x, y, z) and (x', ', z’) are the coordinates of any point with
respect to these two sets of axes. (That is, both sets of coordinates
represent the same point.) Then the relationship between the two
sets of coordinates can be written in the form

r=R(T)r, (1.1)

where r=(x, y, z) and ¥’ =(x", ', z’), all such vectors being treated
as 3x 1 column matrices in matrix expressions unless otherwise
indicated, and R(T) is a 3 x 3 matrix with real coefficients which
depend only on the rotation, and not on the particular point under
consideration. (The definitions, notations and properties of
matrices used in this book are summarized in appendix 4.) R(T)
will be called the transformation matrix corresponding to the
transformation or symmetry operation 7. It will sometimes be
written merely as R. As an example, suppose that Oz and Oz’

1



2 BASIC CONCEPTS [Ch.1,§1

coincide, and Ox’, Oy’ are obtained from Ox, Oy by a rotation

through an angle ¢ in the right-hand screw sense about Oz, as
shown in figs. 1.1 and 1.2. Then

x'=xcos¢ + ysing

y ' =—xsing + ycos,
z'=z
~2,2'
d3
yl
y
[
X x/
Fig. 1.1
y TV
¢ |\y/
I\ X
1\
1 ¢ Q,X
0




