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9 Preface

Many parametric models, possessing different characteristics, shapes, and prop-
erties, have been proposed in the literature. These models are commonly used
to develop parametric inferential methods. The inference developed and con-
clusions drawn based on these methods, however, will critically depend on the
specific parametric model assumed for the analysis of the observed data. For
this reason, several model validation techniques and goodness of fit tests have
been developed over the years.

The oldest and perhaps the most commonly used one among these is the
chi-squared goodness of fit test proposed by Karl Pearson over a century ago.
Since then, many modifications, extensions, and generalizations of this meth-
odology have been discussed in the statistical literature. Yet, there are some
misconceptions and misunderstandings in the use of this method even at the
present time.

The main aim of this book is, therefore, to provide an in-depth account of
the theory, methods, and applications of chi-squared goodness of fit tests. In
the process, pertinent formulas for their use in testing for some specific promi-
nent distributions, such as normal, exponential, and Weibull, are provided. The
asymptotic properties of the tests are described in detail, and Monte Carlo simu-
lations are also used to carry out some comparisons of the power of these tests
for different alternatives.

To provide a clear understanding of the methodology and an appreciation for
its wide-ranging application, several well-known data sets are used as illustra-
tive examples and the results obtained are then carefully interpreted. In doing
so, some of the commonly made mistakes and misconceptions with regard to
the use of this test procedure are pointed out as well.

We hope this book will serve as an useful guide for this popular methodology
to theoreticians and practitioners alike. As pointed out at a number of places in
the book, there are still many open problems in this area, and it is our sincere
hope that the publication of this book will rejuvenate research activity, both
theoretical and applied, in this important topic of research.

Preparation of a book of this nature naturally requires the help and co-
operation of many individuals. We acknowledge the overwhelming support
we received from numerous researchers who willingly shared their research
publications and ideas with us. The editors of Academic Press/Elsevier
were greatly supportive of this project from the start, and their production
department were patient and efficient while working on the final production
stages of the book. Our sincere thanks also go to our respective families for

xi
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their emotional support and patience during the course of this project, and
to Ms. Debbie Iscoe for her diligent work on the typesetting of the entire
manuscript.

Vassilly Voinov, Kazakhstan
Mikhail Nikulin, France
Narayanaswamy Balakrishnan, Canada
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( Chapter 1)

A Historical Account

The famous chi-squared goodness of fit test was proposed by Pearson (1900).

If simple observations are grouped over r disjoint intervals A ; and N ™) denote
observed frequencies corresponding to a multinomial scheme with np; () as
the expected frequencies, for j = 1,2, ...,r, the Pearson’s sum is given by

TN —np;(9)?
2 _ J = VT 9y (), 1.1
=) @ OV () (1.1)

j=1

where V(@) is the vector of standardized frequencies with components
V™ @) = (N — np;(0)/(np;O)'2, j=1,...r, 6 € © C R".

If the number of sample observations n — 00, the statistic in (1.1) will follow
the chi-squared probability distribution with r — 1 degrees of freedom. We
know that this remarkable result is true only for a simple null hypothesis
when a hypothetical distribution is specified uniquely (i.e. the parameter 6
is considered to be known). Until 1934, Pearson believed that the limiting
distribution of the statistic in (1.1) will be the same if the unknown parameters
of the null hypothesis are replaced by their estimates based on a sample; see,
for example, Baird (1983), Plackett (1983, p. 63), Lindley (1996), Rao (2002),
and Stigler (2008, p. 266). In this regard, it is important to reproduce the words
of Plackett (1983, p. 69) concerning E.S. Pearson’s opinion: “I knew long ago
that KP (meaning Karl Pearson) used the ‘correct’ degrees of freedom for (a)
difference between two samples and (b) multiple contingency tables. But he
could not see that x? in curve fitting should be got asymptotically into the

Chi-Squared Goodness of Fit Tests with Applications. http://dx.doi.org/10.1016/B978-0-12-397194-4.00001-6
© 2013 Elsevier Inc. All rights reserved. 1



@ Chi-Squared Goodness of Fit Tests with Applications

same category.” Plackett explained that this crucial mistake of Pearson arose
from Karl Pearson’s assumption “that individual normality implies joint
normality.” Stigler (2008) noted that this error of Pearson “has left a positive and
lasting negative impression upon the statistical world.” Fisher (1924) clearly
showed that the number of degrees of freedom of Pearson’s test must be reduced
by the number of parameters estimated from the sample. To this point, it
must be added that Fisher’s result is true if and only if the parameters are
estimated from the vector of frequencies minimizing Pearson’s chi-squared
sum, using multinomial maximum likelihood estimates (MLEs), or by any other
asymptotically equivalent procedure (Greenwood and Nikulin, 1996, p. 74).
Such estimates based on a vector of frequencies, which is not in general
the vector of sufficient statistics, are not asymptotically efficient, however,
due to which the Pearson-Fisher test is not powerful in many cases. For a
review on using minimum chi-squared estimators, one may refer to Harris and
Kanji (1983). Nowadays, Pearson’s test with unknown parameters replaced by
estimates (3,, based on the vector of frequencies is referred to as Pearson-Fisher
(PF) test given by

. LW —api@a))?
X2 =) —

= =V®T(@,)V™@,). (1.2)
j=1 npj\On

Dzhaparidze and Nikulin (1974) proposed a modification of the standard
Pearson statistic (DN test), valid for any J/n-consistent estimator 0,, of an
unknown parameter, given by

UZ(8,) = V™7 @)1 —B,BIB,) 'BI)V"(®,), (1.3)
where B,, is an estimate of the matrix B with elements

0f(x.0)

j=15"~sr» k=1,-..,s.

b
e \/Pf(o fAJ

This test, being asymptotically equivalent to the Pearson-Fisher statistic in many
cases, is not powerful for equiprobable cells (Voinov et al., 2009) but is rather
powerful if an alternative hypothesis is specified and one uses the Neyman-
Pearson classes for constructing the vector of frequencies.

Several authors, such as Cochran (1952), Yarnold (1970), Larntz (1978),
Hutchinson (1979), and Lawal (1980), considered the problem of approximating
the discrete distribution of Pearson’s sum if some expected frequencies become
too small. Baglivo et al. (1992) elaborated methods for calculating the exact
distributions and significance levels of goodness of fit statistics that can be
evaluated in polynomial time. Asymptotically normal approximation of the
chi-squared test valid for very large number of observations such that n — o0,
n/r — « was considered by Tumanyan (1956) and Holst (1972). Haberman
(1988) noted that if some expected frequencies become too small and one does



Chapter | 1 A Historical Account

not use equiprobable cells, then Pearson’s test can be biased. Mann and Wald
(1942) and Cohen and Sackrowitz (1975) proved that Pearson’s chi-squared
test will be unbiased if one uses equiprobable cells. Other tests, including
modified chi-squared tests, can be biased as well. Concerning selecting category
boundaries and the number of classes in chi-squared goodness of fit tests,
one may refer to Williams (1950), the review of Kallenberg et al. (1985) and
the references cited therein, Bajgier and Aggarwal (1987) and Lemeshko and
Chimitova (2003). Ritchey (1986) showed that an application of the chi-squared
goodness of fit test with equiprobable cells to daily discrete common stock
returns fails, and so suggested a test based on a set of intervals defined by
centered approach.

Even after Fisher’s clarification, many statisticians thought that while
using Pearson’s test one may use estimators (such as MLEs) based on non-
grouped (raw) data. Chernoff and Lehmann (1954) showed that replacing the
unknown parameters in (1.1) by their MLEs based on non-grouped data would
dramatically change the limiting distribution of Pearson’s sum. In this case, it
will not follow a chi-squared distribution and that, in general, it may depend
on the unknown parameters and consequently cannot be used for testing. In
our opinion, what is difficult to understand for those who use chi-squared
tests is that an estimate is a realization of a random variable with its own
probability distribution and that a particular estimate can be quite far from the
actual unknown value of a parameter or parameters. This misunderstanding is
rather typical for those who apply both parametric and nonparametric tests for
compound hypotheses (Orlov, 1997). Erroneous use of Pearson’s test under
such settings is reproduced even in some recent textbooks; see, for example,
Clark (1997, p. 273) and Weiers (1991, p. 602). While Chernoff and Lehmann
(1954) derived their result considering grouping cells to be fixed, Roy (1956)
and Watson (1958, 1959) extended their result to the case of random grouping
intervals. Molinari (1977) derived the limiting distribution of Pearson’s sum
if moment-type estimators (MMEs) based on raw data are used, and like in
the case of MLEs, it depends on the unknown parameters. Thus, the problem
of deriving a test statistic whose limiting distribution will not depend on the
parameters becomes of interest. Roy (1956) and Watson (1958) (also see Drost,
1989) suggested using Pearson’s sum for random cells. Dahiya and Gurland
(1972a) showed that, for location and scale families with properly chosen
random cells, the limiting distribution of Pearson’s sum will not depend on the
unknown parameters, but only on the null hypothesis. Being distribution-free,
such tests can be used in practice, but the problem is that for each specific null
distribution, one has to evaluate the corresponding critical values. Therefore,
two different ways of constructing distribution-free Pearson-type tests are:
(1) to use proper estimates of the unknown parameters (e.g. based on grouped
data) and (ii) to use specially constructed grouping intervals. Yet another way
is to modify Pearson’s sum such that its limiting distribution would not depend
on the unknown parameters. Roy (1956), Moore (1971), and Chibisov (1971)
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obtained a very important result which showed that the limiting distribution
of a vector of standardized frequencies with any efficient estimator (such as
the MLE or the best asymptotically normal (BAN) estimator) instead of the
unknown parameter would be multivariate normal and will not depend on
whether the boundaries of cells are fixed or random. Nikulin (1973c), by using
this result and a very general theoretical approach (nowadays known as Wald’s
method; see Moore (1977)) solved the problem completely for any continuous
or discrete probability distribution if one uses grouping intervals based on
predetermined probabilities for the cells (a detailed derivation of this result is
given in Greenwood and Nikulin (1996, Sections 12 and 13)). A year later, Rao
and Robson (1974), by using much less general heuristic approach, obtained
the same result for a particular case of the exponential family of distributions.
Formally, their result is that

Y12(6,) = X2(0,) + V™7 (0,)B,(J, — Jgn) 'BIV™(@,), (1.4)

where J, and Jg, = B,{ B, are estimators of Fisher information matrices for
non-grouped and grouped data, respectively. Incidentally, this result is Rao and
Robson (1974) and Nikulin (1973c¢). The statistic in (1.4) can also be presented
as (see Nikulin, 1973b,c; Moore and Spruill, 1975; Greenwood and Nikulin,
1996)

Y120,) = VW7 @,) 1 - B,J;'B]) "'V @,). (15)

The statistic in (1.4) or (1.5), suggested first by Nikulin (1973a) for testing the
normality, will be referred to in the sequel as Nikulin-Rao-Robson (NRR) test
(Voinov and Nikulin, 2011). Nikulin (1973a,b,c) assumed that only efficient
estimates of the unknown parameters (such as the MLEs based on non-grouped
data or BAN estimates) are used for testing. Spruill (1976) showed that in the
sense of approximate Bahadur slopes, the NRR test is uniformly at least as
efficient as Roy (1956) and Watson (1958) tests. Singh (1987) showed that the
NRR test is asymptotically optimal for linear hypotheses (see Lehmann, 1959, p.
304) when explicit expressions for orthogonal projectors on linear subspaces are
used. Lemeshko (1998) and Lemeshko et al. (2001) suggested an original way
of taking into account the information lost due to data grouping. Their idea is to
partition the sample space into intervals that maximize the determinant of Fisher
information matrix for grouped data. Implementation of the idea to NRR test
showed that the power of the NRR test became superior. This optimality is not
surprising because the second term in (1.4) depends on the difference between
the Fisher information matrices for grouped and non-grouped data that possibly
takes the information lost into account (Voinov, 2006). A unified large-sample
theory of general chi-squared statistics for tests of fit was developed by Moore
and Spruill (1975).

Hsuan and Robson (1976) showed that a modified statistic would be quite
different in case of moment-type estimators (MMEs) of unknown parameters.
They succeeded in deriving the limiting covariance matrix for standardized



