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A group-free characterization of the P-geometry for Co,

Bruce N. Cooperstein* and Sergey V. Shpectorov’

(Communicated by A. Pasini)

Abstract. It is shown under minor extra assumptions that a P-geometry which has as its point
residue the rank three P-geometry for the group My, is the rank four P-geometry which has
Co; as its group of automorphisms.
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1 Introduction
A P-geometry is a geometry that belongs to the diagram

o B e DR G
2 2 2 2 1

)

where the edge o—P—cl: denotes the geometry of edges and vertices of the Petersen

graph. Flag-transitive P-geometries were classified in a series of papers by Ivanov
and Shpectorov. A survey of this classification can be found in [6]. It was shown that
there exist exactly eight such geometries, all of them related to sporadic simple groups
or non-split extensions of sporadic groups with one of their modules over GF(3).
In fact, this relation between P-geometries and sporadic simple groups was the
principal motivation for the study of P-geometries: the classification of flag-transitive
P-geometries was meant to be a contribution to the geometric theory of finite simple
groups.

The classification of [6] makes heavy use of the flag-transitivity condition, that
is, it is essentially group-theoretic. This is, of course, very far from a purely geo-
metric theory. From this point of view, it is desirable to develop methods to study
P-geometries in a ‘“‘group-free” way. Ideally, the classification of P-geometries must
be reproved under purely geometric assumptions. However, this goal seems to be too
ambitious at present. The principal complication is that if the flag-transitivity condi-
tion is dropped then the number of examples increases astronomically. To illustrate
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this point, Jet us consider one of the flag-transitive P-geometries, a rank four geo-

"‘ - sl with, the full automorphism group 323. Co,. Factorizing this geometry over

L et action: of. any subgroup of the normal subgroup 323, one always gets agam a P-

geometry. Needless to say, the number of examples obtamed in this way is huge.

In rank five, there is another P-geometry with the automorphism group 3437! . BM,
leading to even more impressive numbers.

One possible solution of the above problem would be to classify only the 2-simply
connected P-geometries. They can be considered as the generic examples, because,
arguably, every P-geometry can be obtained from some 2-simply connected P-
geometry by factorizing it over a suitable subgroup of the automorphism group. Only
five known P-geometries are 2-simply connected, so this looks like a meaningful proj-
ect. However, at present it is unclear how the condition of 2-simple connectedness
can be utilized, and so new ideas are needed.

Of course, even though a complete classification is beyond reach, we can try and
characterize particular examples of P-geometries by some geometric conditions. Of
particular interest is a series of three P-geometries of ranks 3, 4 and 5 related to
groups Mj;, Co, and BM. A purely geometric characterization of the geometry of
M, was obtained by Hall and Shpectorov [4], who proved the following.

Theorem 1. Suppose that ¥ is a rank three P-geometry such that
(1) any two lines intersect in at most one point, and

(2) any three pairwise collinear points belong to a plane.

Then % is either the geometry of My, or its triple cover, the geometry of 3 - M.

(Here points, lines and planes are the types corresponding to the first three nodes in
the diagram above.) In the present paper we do the second step and obtain the fol-
lowing characterization of the geometry of Co,.

Theorem 2. Suppose that % is a rank four P-geometry such that
(1) any two lines intersect in at most one point,

(2) any three pairwise collinear points belong to a plane, and
(3) the residue of every point is the geometry of Ma;.

Then % is the geometry of Co,.

Notice that it is the condition (3) that eliminates the geometry of 3?* - Co, and its
numerous quotients. Incidentally, (3) also eliminates the flag-transitive rank four
P-geometry of the group Js. The fourth (and last) example of flag-transitive P-
geometries of rank four, the geometry of My, is eliminated by the condition (1).

Our proof of Theorem 2 proceeds in several stages. First we study the collinearity
graph T of 4 and establish its distance-distribution diagram (not surprisingly, the
same diagram describes the collinearity graph of the geometry of Co;). This gives us
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a wealth of information about ¢, in particular, the total number of points and the
possible relations between points. At stage two we recover two classes of
tries in ¥, symplecta (or symps) related to Sp(6,2) and subgeometries 36%5(367
the dual polar space of Ug(2). We call the latter subgeometries unita. The unita, num-
bered 2300, become at stage three the vertices of a new graph X. We study the local
structure of X and show that it is the same as that of the well-known rank three graph
on 2300 points with the automorphism group Co,. The latter graph was characterized
by its local structure by Cuypers [3], so we can invoke his result to identify X. It re-
mains, at stage four, to recover I' and % from the known X.

For an introduction to diagram geometries we recommend [7]. In [5] one can find a

wealth of information about the known P-geometries and a related class of sporadic
geometries, called tilde geometries.

2 The collinearity graph of I'(M3;)

Let # be the rank three P-geometry of M, and let A be the collinearity graph of #.
In this section we collect a number of results on A.

First, we review the construction of the geometry . Recall that the Witt design
W = S(3,6,22) is a block design (P, %), where P = {1,2,...,22} is the point set
of # and Z is the set of blocks, that is, subsets of P. We will refer to the elements
of P as to the Witt points. Every block consists of six Witt points, which explains
why the blocks of #~ are called hexads. The property that makes # unique up to
isomorphism among all block designs on 22 points is the following: any three Witt
points are contained in a unique hexad. The automorphism group of #” coincides
with Aut M»,.

The points of # (or #-points) are the 231 pairs of Witt points. The lines of # (-
lines) can be described as follows. Every line consists of three points (i.e., three pairs
of Witt points) that are pairwise disjoint and whose union is a hexad. Thus, two
points are collinear whenever they are disjoint as pairs of Witt points and the 4-set
they form is contained in a hexad. It follows from this description that the geometry
A is a partial linear space, that is, any two collinear points belong to a unique line.
Indeed, any three Witt points are contained in a unique hexad and hence any four
Witt points are contained in at most one hexad.

Let A be the collinearity graph of #. The graph A is locally the 2-clique extension
(see the definition in the next section) of the line graph of the Petersen graph. In par-
ticular, every point x is collinear with 30 other points. The points outside x* (as usual,
x* denotes the set of points collinear with x, including x itself) split into two groups.
Let A}(x) be the set of points y such that x and y share a Witt point. Let A3 (x)
denote the set of points y ¢ x* such that x and y are disjoint as pairs of Witt points.
We have that |Al(x)| = 2 - 20 = 40 and hence |A2(x)| =231 — 1 — 30 — 40 = 160.

Figure 1 shows the decomposition of A with respect to a point, including infor-
mation about the embedding of lines. The information about lines is encoded in the
diagram in the following way. Suppose {y,u,v} is a line on a point y. If the edge
{y,u} is represented by a valency n next to the box for y then {y,v} is represented
either by the same n (in which case n must be even), or by 7.
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3+6+12

1+4;+42

Figure 2. Decomposition of A from a plane

Figure 3. Decomposition of a quad from a point

Maximal sets of pairwise collinear points of # are called planes (or #-planes).
Every plane consists of seven points. The seven pairs of Witt points that are the
points of a plane partition the complement of an octad. Octads are certain 8-element
subsets of P inherited from the largest Witt design S(5, 8, 24). (Octads are the blocks
of the latter design that fall into the point set of #".) Planes bijectively correspond to
octads. Every plane is closed with respect to lines, that is, a line that contains two
points of a plane is fully contained in it. It follows that a plane of # contains exactly
seven lines, which turn it into a projective plane of order two, a Fano plane. Figure 2
shows the decomposition of A with respect to a plane.

The geometry # contains quads. Those are point-line subgeometries of 5# iso-
morphic to the generalized quadrangle of order (2,2). We will often identify the quad
with the the subgraph in A induced on the points of the quad. Figure 3 represents the
decomposition of (the collinearity graph of ) a quad with respect to one of its points.

The quads are in a one-to-one correspondence with the hexads. The quad X cor-
responding to a hexad X consists of all points (i.e., pairs of Witt points) that are con-
tained in X and all lines (i.e., triples of pairs of Witt points) that partition X. Notice
that quads are closed with respect to lines, and every line is contained in a unique
quad. In fact, since two hexads meet in at most two Witt points (in fact, zero or two
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6 3+12; 15
24 /\ 15

Figure 4. Decomposition of A from a quad

Witt points), two quads are either disjoint or they meet in just one point. Therefore,
two points are contained in at most one quad. If x and y, x # y, are contained in a
quad then that quad will be denoted by Q(x, y).

Two edges of the Petersen graph are called opposite if they are at maximal dis-
tance, three. If x is a point of a quad Q then the three lines on x in Q are opposite in
the residue of x. (Recall that the lines on x correspond to the edges and planes on x
correspond to the vertices of the Petersen graph.) Reversely, if x is a point and L;, L,
and L3 are three lines on x pairwise opposite in the residue of x then there is a quad Q
containing the lines L;.

If ye A;(x) then xUy is a set of three Witt points. Since every triple of points is
contained in a hexad, Q(x, y) is defined for such x and y. Reversely, if x and y are
two non-collinear points in a quad X = Q(x, y) then y € A}(x). Comparing Figure 3
with Figure 1, we see that quads are geodesically closed subgraphs. In Figure 4 we
present the decomposition of A with respect to a quad.

In the remainder of this section we record some properties of A, related to Figures
1, 2 and 4. Recall that A(x, y) is the set of vertices of A adjacent to x and y (i.e.,
points collinear with x and y). If x and y are non-adjacent then the subgraph induced
on A(x, y) is called a u-graph of A.

Lemma 2.1. (1) If y € A)(x) then A(x, y) is a coclique of size three. It is fully contained
in Q(x, y).

(2) If y,z € A)(x) and y and z are collinear then Q(x, y) = Q(x, z).
(3) If y € A3(x) then A(x, y) is a line.

Proof. For (1), let x = {a,b} and y = {a,c} and let X be the hexad containing a, b
and c. Suppose z = {d, e} is a point collinear with x and y and let X; and X> be the
hexads containing xU z and y U z, respectively. Notice that both X; and X> contain
a,d and e. Hence X; = X; = X and (1) follows.

Similarly, if z is a point collinear with y and z € A}(x) then z = {b,d} for some
Witt point d. Again the hexad containing y and z contains a,b and ¢, and hence it
coincides with X. This implies (2). Notice that (1) and (2) confirm two of the valen-
cies shown in Figure 1.

For (3), observe that x is contained in 10 planes, every one of those planes contains
four lines L not containing x, and each of those lines is contained in a unique second
plane which, in turn, contains four points not on L. Thus, there are 10 - 4 - 4 points
y € Ay(x) such that A(x, y) contains a line. Together with Figure 1 and (1), this
proves (3). O
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Recall that a geometric hyperplane is a set of points such that every line of the
geometry is either contained in the set, or meets it in exactly one point.

Lemma 2.2. If © is a plane or a quad then the set of points collinear with a point of
® (this includes the points of ®© itself) is a geometric hyperplane of #. In particular,
every line of # contains a point that is either contained in © or is collinear with a point
of ©.

Proof. Follows from Figures 2 and 4. O

Corollary 2.3. If ®, and ©, are two planes, or two quads, or a plane and a quad, then
®, U@, induces a connected subgraph of A.

Proof. Indeed, ®; contains a line, and so it is at distance at most one from ®;. []

Recall that an ovoid is a set of points such that every line contains exactly one
point from this set.

Lemma 2.4. Suppose © is a quad in A.

(1) If x is a point collinear with a point of © then x is collinear with exactly three
points from ©, and these three points form a line.

(2) If x is a point not collinear with a point of ® then there are exactly five points y in
© such that y € A)(x). The points y form a coclique (an ovoid) in ®.

Proof. Let X be the hexad corresponding to the quad @, and let x = {a, b} be a point,
not in ®. (Thus, {a,b} ¢ X.) Suppose first that X and {a, b} are disjoint. For c e X
let Y be the hexad containing a,b and c. Since X NY # &, we have |[X N Y| =2,
say, XN Y = {c,d}. Clearly, y = {c¢,d} is a point of ® adjacent to x. Since ¢ was
arbitrary, we obtain that x is adjacent to three points from ®. Furthermore, the
corresponding three pairs of Witt points partition X and so the three points form a
line.

Suppose now that a (but not b) is contained in X. Let Y be an arbitrary hexad
containing {a,b}. Then |[XNY|>1 and hence |[XNY|=2, say, XNY = {a,c}.
This shows, first, that x is not adjacent to a point from ®. Secondly, since for every
c € X\{a}, the set {a, b, c} is contained in a hexad, we also obtain that the points of
® that are contained in a common quad with x are exactly the five points {a,c},
c € X\{a}. Clearly, these five points form a coclique in ®, in fact, an ovoid. O

3 Local structure

For a graph E, its k-clique extension k.E is defined as the graph on the set {(x, )|
xeE,ie{l,...,k}}, where distinct vertices (x,i) and (y, j) are adjacent whenever
x and y are adjacent or equal. Let = be the mapping from k.Z to E defined by the
projection (x, i) — x. Then every fiber of 7 is a k-clique. Two such k-cliques induce a
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2k-clique or a disjoint union of two k-cliques, depending on whether or not the two
vertices of E form an edge.

For two graphs I' and E we say that I is locally E if for every vertex x € I" the
neighborhood I'(x) of x in I" induces a subgraph isomorphic to Z. In particular, the
valency of I" must be |E]|.

Recall that A is the collinearity graph of the rank three P-geometry s# for the
group M.

Proposition 3.1. If 9 is a geometry satisfying the assumptions of Theorem 2, then its
collinearity graph T is locally the 2-clique extension of A. Conversely, every graph T’
that is locally the 2-clique extension of A is the collinearity graph of some P-geometry
% satisfying the assumptions of Theorem 2.

Proof. First suppose ¥ is a geometry satisfying the assumptions of Theorem 2 and let
I" be its collinearity graph. Let x € 4 be a point. By assumption, the residue of x is
isomorphic to #, and the lines on x play the role of the points of # (s#-points;
similarly, we will be using the terminology ‘7 -lines’ and ‘#-planes’ wherever ambi-
guity may otherwise arise). If y € ¢ is a point collinear with x then define 7(y) to be
the s#-point corresponding to the line xy. This line is unique due to Assumption (1)
in Theorem 2, and so 7 is well-defined. Furthermore, Assumption (2) of Theorem 2
implies that two neighbors y and z of x in I" are collinear if and only if the lines
xy and xz are coplanar, that is, if and only if #(y) and 7(z) are equal or collinear.
Clearly, every fiber of 7 consists of two points, since each line of ¢ has three points.
Thus, I is locally 2.A.

Let now I' be an arbitrary graph that is locally 2.A. For a vertex x e I let 7,
denote the mapping from I'(x) onto A that exists due to the assumption that I is
locally 2.A. Recall that all maximal cliques of A are of size 7 and they correspond to
the s#-planes. Two s -planes intersect in a J#-line, or in a single #-point, or in an
empty set. Define a geometry ¥ related to I' as follows. The points of % will be the
vertices of I'; other elements of 4 on a point x will be defined as the full preimages
under 7, of non-empty intersections of maximal cliques from A. Thus, besides points,
we will have in ¢ elements of size 3 =1+ 2 - 1, which we will call lines, of size 7 =
1 +2- 3, which we will call planes, and of size 15 =1+ 2 -7, which we will call 3-
spaces. Notice that lines, planes and 3-spaces are defined symmetrically with regard
to the points contained in them. Indeed, 3-spaces are simply all maximal cliques of T,
while all other elements are non-empty intersections of maximal cliques.

Incidence on ¥ is defined by inclusion. Notice that every edge of I is contained in a
unique line, and {x, y, z} is a line if and only if 7,(y) = 7.(z). Since I" is connected,
so is 4. Clearly, ¢ has a linear (string) diagram. Furthermore, it follows from the def-
inition of ¢ that the residue of a point is isomorphic to 5. Thus, in order to establish
that ¢ is a P-geometry it remains to show that the points and lines in a plane of ¥
form a Fano plane. However, this is immediate, since planes consist of seven points,
lines have size three, and any two points in a plane are contained in a unique line. We
have shown that ¢ has the diagram of a P-geometry. Since ¢ is connected and all its
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residues of rank at least two are connected, too, we conclude that % is a geometry,
indeed, a P-geometry.

Manifestly, I" is the collinearity graph of ¥. We have already shown that every
edge of I is contained in a unique line, so that the condition (1) from Theorem 2 is
satisfied. Since I' is locally 2.A, two points, y and z, both collinear with x, are col-
linear with each other if and only if x, y and z are contained in a plane. O

Proposition 3.1 shows that Theorem 2 is equivalent to the following.

Theorem 3.2. If T is a connected graph that is locally 2.A then T is isomorphic to the
collinearity graph of %4(Co,).

In the remainder of this paper I' is a connected graph that is locally 2.A. When we
prefer to use geometric terminology we view it as the collinearity graph of a geometry
% satisfying the assumptions of Theorem 2.

4 The diagram of I’

In this section we see how I' decomposes with respect to a point. Since I' is locally
2.A, for every point x there is a mapping 7, sending points collinear to x onto #-
points, as described in the previous section. We can also view 7, as a mapping send-
ing the lines on x onto the #-points.

Let us now fix a point x of %. Since the local structure of I is known we can imme-
diately start with the points in I';(x). By a 2-string in I’ we understand a 2-path yzt
such that y and ¢ are not adjacent. We say that a 2-string yzt is of type 1 if 7,(y) and
7.(t) are contained in a quad in A (that is, 7() € A)(n.(»))), and we say that yzt is
of type 2 otherwise. Recall that, for z € I';(x), the u-graph of x and z is defined as the
subgraph induced on I'(x,z) = I'(x) N T'(z).

Lemma 4.1. Suppose xyz is a 2-string and let © be the connected component of T'(x, z)
containing y. Then the following holds:

(1) If xyz is of type 1 then my establishes an isomorphism between ® and a quad in A.
Furthermore, if y' € © then xy'z is of type 1.

(2) If xyz is of type 2 then © is a plane, and every xy'z with y' € © is of type 2.

Proof. First notice that, as follows from Lemma 2.1 (1) and (3), if xyz is of type 1
then {y} U®(y) is a union of three lines on y and the lines are pairwise non-coplanar,
while if xyz is of type 2 then {y} U®(y) is a plane. In particular, if xyz is of type 2
and y’ € O(y) then xy’z is also of type 2, and (2) follows by connectivity.

Suppose now that xyz is of type 1. By connectivity, if y’ € ® then xy’'z is again of
type 1. Thus, locally @ is a union of three lines. Let the three lines on y be L;, L; and
L3, and let P; be the plane containing x and L;. Let L be the line through x and y.
Since the geometry ¢ associated with I" is a P-geometry, the planes and the 3-spaces
containing L correspond to edges and vertices of the Petersen graph, respectively. In
the residue of y we observe that 7, (P;\{y}) are three J#-lines forming the neighbor-
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hood of 7,(x) in a quad. This means that P;’s correspond in the residue of L to three
pairwise opposite edges of the Petersen graph. (See the discussion in Section 2.) The
same logic used in reverse and applied to x instead of y, allows us now to conclude
that 7.(L;) = ny(P;\{x}) are three #-lines on 7, (y), all contained in some quad.
Since this is true for every vertex y of ® and since every #-line is contained in a
unique quad, we conclude that 7,(®) is a quad in A, establishing (1). O

Lemma 4.2. Every p-graph I'(x,z) in T is connected.

Proof. Suppose ®; and @, are two connected components of I'(x, z). Then 7,(®;) is
either a quad or an #-plane. Now the claim follows from Lemma 2.3. O

Lemmas 4.1 and 4.2 imply that there are two kinds of points in I;(x). We define
I} (x) (respectively, I'7(x)) as the set of those points z in I’;(x) such that the u-graph
I'(x,z) is a copy of a quad (respectively, a plane). Clearly, z € T';(x) if and only if for
an arbitrary point y € I'(x, z) the 2-string xyz is of type i.

For a vertex y in I'(x) we have 2 - 40 (cf. Figure 1) extensions of xy to a 2-string of
type 1, and 2 - 160 extensions to a 2-string of type 2. Thus | (x)| = %230 = 2464 and
|r22( )I 462320 = 91120.

Lemma 4.3. If z is in F2 (x) then z has 15 neighbors in T'(x), 15 neighbors in T} (x),
2 - 120 neighbors in T?(x), and 2 - 96 neighbors in T3(x).

Remark. We use the same bar notation as in the diagrams of graphs to indicate the
embedding of lines.

Proof. Since z € T, (x) we have that 7,(I'(x, z)) is a quad. If y € ['(x,z) and ¢ is the
third point on the line yz then clearly ¢ € 1"21 (x). This accounts for fifteen lines on z.
According to Figure 4, there are further 120 lines {z, u, v} such that u and v are col-
linear with some (in fact, three—cf. Lemma 2.4(1)) points from I'(x, z). Clearly this
implies that u and v are at distance two from x. We contend that u, v € T'7(x). Indeed,
let y € T'(x,z) be a point collinear with # and v. Consider Figure 1 as describing the
decomposition of A with respect to 7, (x). Then 7,(z) must be in A} (m,(x)), since xyz
is of type 1. As follows from Figure 1, every # -line on 7,(z) containing no s -point
cc>2111near with 7,(x) has two s -points in A3(n,(x)). This means that « and v are in
5 (x).

We claim that the remaining 96 lines on z have two points at distance three from x.
Indeed, suppose {z,u, v} is one of those 96 lines. Clearly, the distance between x and
u is at least two. Suppose it is two. Since z and u have no common neighbors in I'(x)
(this follows from Figure 4), the u-graphs I'(x,z) and I'(x,u) must be disjoint. In
particular, 7, () is not adjacent to the quad 7,(I'(x,z)). By Lemma 2.4(2), we have
that uzt is of type 1 for exactly five points z € I'(x, z), and these five points form an
ovoid in I'(x,z). On the other hand, I'(x,u) has a point w at distance one from
I'(x,z). By Lemma 2.4(1), w is collinear with three points a, b, and ¢, forming a line
in T'(x, z). Since w and z are non-collinear, uza, uzb, and uzc must be of type 1, which
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places a, b and ¢ in an ovoid in I'(x, z). This contradiction completes the proof of the
lemma. O

Lemma 4.4. If z is in T7(x) then z has 7 neighbors in T(x), 28 neighbors in T} (x),
7 + 28 + 2 - 84 neighbors in T}(x), and 2 - 112 neighbors in T3(x).

Proof. Recall that I'(x,z) is a plane, ie, |I'(x,z)| =7. If {z,u,v} is a line with
u € T'(x,z) then, clearly, v € ['}(x). This takes care of the sets of neighbors shown
above as 7 and 7. Consider Figure 2 as describing the decomposition of A with
respect to the s#-plane 7,(I'(x, z)). We see that for 28 + 84 lines {z, #,v} not meeting
I'(x, z) the points u and v are collinear with some points from I'(x, z). More in par-
ticular, for the lines in the box 28 we have that # and v are adjacent with three points
(clearly, forming a line) from I'(x,z), while for the lines in the box 84 we have that
u and v are collinear with a unique point from I'(x, z).

It follows from Lemma 4.3 that there are exactly |T; (x)| - 120 lines {z,u, v} with
u € T}(x) and z e T?(x). For each such line we have that v e I'?(x). It follows from
Figure 4 that z,u and v have three common neighbors in I'(x). Hence all such lines
fall (with respect to z) into the box 28. Since |[Z(x)| - 28 is equal to |T; (x)| - 120 - 2,
we conclude that all the lines from the box 28 are of the above type. It now follows
also that if {z,u, v} is from the box 84 then both « and v must be in I'?(x).

Finally, suppose {z,u,v} is one of the 112 lines, for which # and v have no neigh-
bors in I'(x, z). It follows from Figure 2 that z,u and v are collinear with a point w in
[} (x). Then ,, sends {z,u, v} to an #-line with one point, 7,,(z), in the box 120 (see
Figure 4) and the other two points, x,,(#) and 7,,(v), in the box 96. Indeed, suppose
that 7, () is in the box 120. Let a and b be points in I'(x, w) which are adjacent to
z and u, respectively. Notice that z and # have no common neighbors in I'(x) by our
assumption. Hence a # b. Since I'(x,w) is isomorphic to a quad (say, via p,) and
since, by Lemma 2.4(1), z is collinear with three points on a line in I'(x, w), we can
choose a and b to be collinear. Notice that a and u (and likewise, b and z) are not
collinear. Hence =, (a), 7, (b), m,(z) and =, (u) are all contained in a common quad
®. (This follows from Lemma 2.1(3) and (1).) However, this means that the quads
® and 7,,(I'(x,w)) meet in two points, namely, 7, (@) and 7,,(b). This contradiction
proves that =, («) (and similarly, 7, (v)) is in the box 96. Lemma 4.3 now yields that
u and v are in I3(x). O

We now switch to the points at distance three from x.

Lemma 4.5. If z € T3(x) then z has 21 neighbors in T} (x), 210 neighbors in T3(x), and
21 + 210 neighbors in T3(x).

Proof. It follows from Lemmas 4.3 and 4.4 that if {z, u, v} is a line and u € I';(x) then
v € I'3(x). This means that 7, isomorphically maps ® = I';(x) N I'(z) onto an induced
subgraph of A. We will see that that subgraph is in fact the entire A.

Suppose u € @)F‘!I’z1 (x). We claim that » has 30 neighbors in @ (recall that the
valency of A is 30) and that they are all in ® NT'?(x). Indeed, let {z,u’,v'} be one of
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the 30 lines on z that are coplanar with zu. (Equivalently, n, sends ' and v’ to an
A -point collinear with 7, (u).) It follows from Figure 4 that 7, sends the line zu’ onto
a line in A having two points in the box 96 and one point, 7, (u") or 7,(v’), in the box
120. Thus, according to Lemma 4.3, either #’, or v’ is in Fzz(x); the claim follows.

Suppose now that ue ®N l"z,z(x). Then we claim that again u# has 30 neighbors in
®, out of which 3 are in I'J (x) and the remaining 27 are in I';(x). Indeed, according
to Figure 2, there are, respectively, three and twelve lines on u that are coplanar with
zu and that fall under =, into the boxes, respectively, 28 and 84. According to Lemma
4.4, these fifteen lines produce 30 neighbors of u and z, that are in I';(x). (Hence they
are in ©.) More in particular, 3 of these neighbors are in I’} (x), while the remaining
3 + 24 of them are in I'7(x). We have proved the claim.

Since A is connected of valency 30, we now have that 7, maps ® isomorphically
onto A. Since every point in ® N T} (x) is adjacent to 30 points in ® NT?(x), while
every point from ® NTZ(x) is adjacent to 3 points from ® N T (x), we obtain that
the points from @ split between I'; (x) and I'(x) in the proportion one to ten. Since
|A| = 231, we finally obtain that |® N T, (x)| = 21 and |® N T3 (x)| = 210. O

Remark. It was shown in this proof that I'(z) N T} (x) is a coclique.
As an immediate consequence of (4.5) we have

Corollary 4.6. T3(x) = {x} UT(x) UT; (x) UT$(x) is a geometric hyperplane of .

It follows from Lemmas 4.3 and 4.5 that |[I'3(x)| = ﬂxz)ll-ﬂ = 22528. Since every
neighbor of z € T'3(x) is shown to be in I;(x) UT3(x), I has diameter three. The total
number of points in I is therefore 1 + 462 + 2464 + 21120 + 22528 = 46575. We col-
lect most of the information at hand in the diagram in Figure 5. Not coincidentally,
this diagram coincides with the diagram of the collinearity graph of the P-geometry
for Co,.

Since x was an arbitrary point from I', T'J, I'? and I's can be understood as binary
relations on T. It easily follows from the definition of these relations that they are
symmetric.

7+ 28 + 168

Figure 5. Decomposition of I" from a point
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1+12 15

Figure 6. Decomposition of a symp from a point

5 Subgeometries

In this section we establish the existence and some properties of two kinds of sub-
geometries in ¥.

By a symplecton (or a symp, for short) we mean a point-line subgeometry in ¢ iso-
morphic to the (rank three) polar space for Sp(6,2), as well as the subgraph in I in-
duced on the points of the subgeometry. The diagram of a symp is shown in Figure 6.

The existence of symps in I" can be derived from Cooperstein’s lemma [1].

Lemma 5.1. The geodesic closure of any two points in relation T. 21 is a symp. Two non-
collinear points that are contained in a common symp are necessarily in relation 1“2‘.

Proof. Observe that every u-graph in I' is either a clique, or it is (isomorphic to) a
quad. Notice that the 3-cliques in the 15-point u-graphs are true lines, and so the
assumptions of Cooperstein’s lemma [1] are satisfied. Hence the conclusion of that
lemma must hold, that is, the geodesic closure of any pair of points in relation 1"21 isa
subgeometry isomorphic to a non-degenerate polar space of rank three. Since the pu-
graphs in the collinearity graph of that polar space are isomorphic to quads, we con-
clude that that subgeometry is a symp. The second claim also follows. O

The symp defined by two points x and y in relation 1“21 will be denoted S(x, y).
Notice that symps are subspaces, ie., they are closed with respect to lines. We will
make two further comments: First, it follows from Lemma 5.1 that every symp coin-
cides with the geodesic closure of any pair of its non-collinear points. Second, sup-
pose X is a symp and x € X. Then 7,(Z(x)) is a quad. Vise versa, every quad ® in A
arises as 77y(2Z(x)) for some (unique) symp X on x. Indeed, if y and z are chosen in
I'(x) so that n.(y) and 74(z) are non-collinear #-points in ® then y and z are in rela-
tion I') and X must be chosen as S(y, ).

We now prove two lemmas outlining some properties of symps.

Lemma 5.2. Every plane is contained in a unique symp. In particular, the intersection of
two symps is empty, or it is a point, or a line.

Proof. Suppose P is a plane and x € P. Since 7,(P\{x}) is a line, it is contained in a
unique quad. This implies the first claim. Clearly, the intersection of two symps can-
not contain non-collinear points. Since symps are subspaces, the intersection is either
empty, or a point, or a line. O

Lemma 5.3. If y and z are in T} (x) and y and z are adjacent then S(x, y) = S(x,z).
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Proof. Comparing Figures 5 and 6, we see that all neighbors of y in F; (x) are con-
tained in S(x, y). O

Recall that a subspace is a set of points that is closed with respect to lines. That
is, it contains every line that it meets in two points. For example, symps are sub-
spaces. Also, every geometric hyperplane is a subspace. If Q is a set of points then
{Q) denotes the subspace generated by Q, i.e., the smallest subspace containing Q.
The following lemma introduces a new class of subgeometries.

Lemma 5.4. Let ¥ be a symp, x and y be non-collinear points of X, and O =
{u1,ua,...,us} be an ovoid in X(x, y). Then {x,y,0) is a subgeometry of X isomor-
phic to the generalized quadrangle for Og (2).

Proof. The automorphism group of X, Sp(6, 2), is transitive on pairs of non-collinear
points. The stabilizer of two such points (say, x and y) is isomorphic to Sp(4,2) = Se.
It acts transitively on the set of all ovoids in X(x, y). Hence Sp(6, 2) acts transitively
on pairs ({x', »'}, 0), where x’ and y’ are non-collinear and @ is an ovoid in Z(x’, y’).
So it suffices to show that one such pair generates an Og (2) generalized quadrangle.

Observe now that % does contain an Og (2) generalized quadrangle as a geometric
hyperplane. Let % be such a subspace. Let x’ and y’ be non-collinear points of %;.
Then x’ and y’ have five common neighbors in % (see the diagram of the collinearity
graph of % in Figure 7), and these five points form a coclique in Z(x’, y’), hence an
ovoid @. The 16 points in % that are non-collinear with x’ form a connected sub-
graph. Hence the seven points {x’, y'} U @ generate the entire %;. O

The following lemma will be useful.
Lemma 5.5. Let T be a symp and ©® be an Og (2) subgeometry in it. Let u be a point of
® and let uv; be the five lines in ® on u. Then the following hold.
(1) The five # -points m,(vi) share a Witt point a.

(2) If w is a neighbor of u outside ®, such that m,(w) contains a, then w is in relation I
to all the points of © that are collinear with u, and in relation I's to all the points of
® that are not collinear with u.

(3) The point u is the only neighbor of w in .

Proof. Claim (1) holds because the points v; are pairwise in relation T, (since they are
in a symp). The first part of (2) holds by the choice of w. Let ¢ be a point of © that
is not collinear with u. Since ¢ € T, (1), we have that m,(I(«, 1)) is a quad (say, @)

5
10 8
OO

Figure 7. Decomposition of the O (2) generalized quadrangle from a point
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1 5 21
42 40 32
i 5 21

Figure 8. Decomposition of a uniton from a point

and, furthermore, the union of the pairs 7, (v;) is the hexad X that corresponds to
that quad @. By the definition of w, the pair 7,(w) meets X in just a. This means (see
Lemma 2.4 and its proof) that =,(w) is at distance two from ®. Now Lemma 4.3
yields that w e I';(¢), proving (2). Since 7,(w) meets the hexad X in just one Witt
point, we observe that w is not adjacent to any vertex of X adjacent to u. Also, since
¥ is geodesically closed, w cannot be adjacent to any vertex of X that is not adjacent
to u. Hence (3) holds. O

By a uniton in 4 we mean a point-line subgeometry that is closed with respect to
lines (i.e., it is a subspace) and isomorphic to the dual polar space for Ug(2). It will be
convenient to view a uniton as the subgraph of I' induced on the points of the sub-
geometry. Since the u-graphs in a uniton are disconnected, two points at distance two
in a uniton are necessarily in relation I') . However, as one can see from the diagram
of a uniton (Figure 8) u-graphs in the uniton are not the full u-graphs in I'. So unita
are not geodesically closed. It means we will have to work harder in order to con-
struct them.

For points x and z with z € T3(x) set P(x,z) = I'(x) N T (z). According to Figure
5, the size of P(x,z) is 21. Moreover, we remarked after Lemma 4.5 that this set of
21 points is a coclique. Also, define Q(x,z) = {x,z} U P(x,z) U P(z,x) and D(x,z) =
{Q(x,z)). It is immediate from the definition that D(x,z) = D(z, x).

Proposition 5.6. Suppose x and z are points with z € I'3(x). Then D(x, z) is a uniton.

We will prove this proposition in a series of lemmas. First we will study the set
Q(x,z). For a point y € P(z,x) we will denote by L(y) the set P(x,z) NI'(y).

Lemma 5.7. If y € P(z,x) then L(y) = S(x,y) N P(x,z) is of size five. Furthermore,
7y (L(p)) is an ovoid in the quad 7. (T'(x, y)).

Proof. Let ® = m,(I'(x, y)). Observe that 7,(z) cannot be collinear with an »#-point
from ©. Indeed, if it is, then z is adjacent to a point from I'(x, y), which means that
the distance between x and z is at most two, a contradiction. Now the claim of the
lemma follows from Lemma 2.4(2). O

Lemma 5.8. The set of points P(x,z) endowed with the lines L(y), y € P(z,x), is a pro-
Jective plane of order 4.

Proof. We claim that any two points # and v in P(x,z) have at most one common
neighbor in P(z, x). Indeed, suppose y,w € P(z,x) are collinear with both « and v.
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Then S(x, y) = S = S(x,w), where S = S(u,v). However this means that both y and
w are in S, which implies that z € S, since S is geodesically closed. This is a contra-
diction since the distance between x and z is three. Thus, » and v have at most one
common neighbor in P(z, x).

We now have that the geometry in question is a partial linear space. Since it has 21
points, each incident to five lines, and 21 lines, each incident to five points, we obtain
that our geometry is a projective plane. O

For a Witt point a let C, denote the set of 21 #-points {a,b}, b # a. Notice that
C, is a coclique in A, in which any two #-points are in relation A;.

Lemma 5.9. The cocliqgue P(x,z) is bijectively mapped by n, onto C, for some Witt
point a.

Proof. Let u,v € P(x,z). It follows from Lemmas 5.7 and 5.8 that « and v are in rela-
tion I'}. This means that the #’-points 7,(x) and 7x(v) share a common Witt point.
Since this is true for all »,v € P(x, z), the claim of the lemma follows. O

We will construct the subgraph D(x,z) “layer-by-layer”. Let Di(x,z)=
{x,P(x,z)). For a point w and a Witt point b, let #(w, b) be the union of 21 lines on
w, whose points (other than w) are mapped by =,, into C,. We will call €(w, b) a line
claw.

Lemma 5.10. The subspace D\(x, z) is the union of the 21 lines xu, u € P(x, z). That is,
D (x,z) is the line claw € (x, a), where a is as in Lemma 5.9.

Proof. According to Lemma 5.9, P(x,z) is mapped by n, onto C,, and it is a co-
clique, so the claim follows. O

It follows that D;(x,z) has size 1+ 212 =43. Clearly, D;(x,z) = D(x,z). We
will see later that D;(x, z) contains, in fact, the entire neighborhood of x in D(x, z).

For a line claw D; = €(x, a), we will call a symp Z on x compatible with D, if the
hexad corresponding to the quad 7,(2(x)), contains a. There are exactly 21 symps
compatible with Dy, and each of them contains exactly five lines from D;. (If we view
the lines in D, as points, and the intersections of D; with compatible symps as lines,
then the geometry that results is a projective plane of order four, cf. Lemma 5.8.)

Next, we extend Dj(x,z) to a larger subgraph D,(x,z). For y € P(z,x) define
O~ (x,y) = <x, y,L(»)). According to Lemma 5.7, L(y) is an ovoid in I'(x, y) and
hence, by Lemma 5.4, O~ (x, y) is an Og (2) subgeometry in the symp S(x, y). The
latter symp is one of the 21 symps compatible with D(x,z). Define D;(x,z) as the
union of the twenty one subgraphs O~ (x, y), y € P(z,x). Since symps are geodesi-
cally closed, S(x, y) # S(x, y') whenever y, y' € P(z,x), y # y'. (Indeed, z is a com-
mon neighbor of y and y’, and z € I'3(x).) Hence S(x, y) N S(x, ') is a line, namely,
one of the lines in Dy (x, z) (cf. Lemmas 5.2 and 5.8). Thus, the intersection of S(x, y)
with D,(x, y) coincides with O~ (x, y). Clearly, O~ (x, y) and O~ (x, y') meet in the
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same line S(x, y) N S(x, y’). It follows that D, (x, z) contains, besides D (x, z), exactly
21 -16 = 336 points and all these points belong to 1"2l (x).

Lemma 5.11. Suppose y € P(z,x) and let z' be the third point on the line zy. Then
P(x,z")N P(x,z) = L(y). Furthermore, Dy(x,z') = D\(x,z) and Dy(x,z') = Dy(x, z).

Proof. First of all, L(y) is contained in P(x,z’)N P(x,z). This means that the line
claws D;(x,z") and D;(x,z) share five lines, yielding D;(x,z') = D;(x,z). In partic-
ular, the same 21 symps are compatible with D;(x,z’) and D;(x,z). Let S be one of
those symps and let ¢ (respectively, ') be the neighbor of z (respectively, z’) in S. Let
T =P(x,z')NT(¢') and ® = {x,1', T). To prove that Dy(x,z') = D(x, z) it suffices
to show that ® = O~ (x,7). If t = y then also ¢/ = y and T = L(y), so ® = O~ (x,1).
Suppose now that ¢ # y. Let u be the unique point in L(y) N L(t). Since u € L(y), we
have that u € P(x,z’). It now follows that ¢’ is collinear with u. We claim that fur-
thermore ¢’ is the third point on the line ut. Indeed, let S’ = S(u,z). Notice that
y € S’ and hence also z’ € ', because z’ is on the line zy. Since z’ € S’, also t' € S’.
On the other hand, ¢’ € S. Thus, ¢’ is contained in SN S’ which coincides with the line
ut. (Notice also that ¢ # ¢’ because every point of uf is collinear with a unique point
on zy. This can be seen in the symp S’.) Thus indeed, ¢’ is the third point on the line
ut. This shows that ' € O~ (x,t). Since also T < Dy(x,z')NS < O~ (x,t), we con-
clude that ® < O~ (x, ?), yielding equality because of the equal size. We have proved
that D, (x,z") = Dy(x, z).

Finally, the fact that ¢’ is the third point on uz implies that u is the only common
point in 7" and L(¢). This shows that P(x,z’) and P(x,z) have no common points
outside L(y). O

We can now establish that D,(x, z) is a subspace.

Lemma 5.12. The following hold.
(1) Dy(x,z) is a subspace, and hence D>(x,z) = {x, P(x,z), P(z,x)).

(2) If ue Di(x,z) then u is on exactly 21 lines in Dy(x,z) and these lines form a line
claw €(u,a) for some Witt point a.

Proof. Suppose u,v € Dy(x,z) and they are collinear. We claim that ¥ and v must
belong to the same O~ (x, y). Suppose not. Then in view of Lemma 5.10 either u or
v is not in Dj(x, y). Without loss of generality, u ¢ D;(x, y). Then ue O~ (x, y) for
a unique y € P(z,x). If ve S(x,y) then ve O (x, y) (indeed, S(x, y) N Dy(x,z) =
O~ (x,y)), a contradiction. So v ¢ S(x, y). If v € D;(x,z) then Lemma 5.5(2) implies
that « and v are in relation I';, a contradiction. Hence also v ¢ D;(x,z) and Lemma
5.3 yields a contradiction, proving our claim and (1).

Turning to (2), let u e Di(x,z). In the case u = x the Claim (2) follows from
Lemma 5.9, so suppose u # x. If u is not in P(x,z) then choose y € P(z,x) that is
noncollinear with u and substitute z with the third point z’ on the line zy. According
to Lemma 5.11, u € P(x,z') and D,(x,z") = D,(x, z). Thus, without loss of generality



