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Preface

This is another volume in the series based on invited lecturps®teliverelf at:
Heriot-Watt University as part of an extended research programmesiupdethef
general sponsorship of the Science Research Council of Great Britain:  The
articles in the present volume are devoted to a discussion of recent results
in population dynamics and viscoelasticity, and also to a comprehensive
survey of modern developments in semigroups of nonlinear contractions.

The authors have once again been extremely helpful in the preparation of
the typescript. It is a pleasure to acknowledge their assistance and also
that of Mr. G. Andrews who prepared the written version of the lectures by
Professor Pazy. Thanks must also be expressed to Mrs. M. Gardiner and
Mrs. M. E. Crawford for their painstaking and expert typing, and to

Lynda Robertson for the diagrams in the article by Professor Pazy.

Edinburgh R. J. Knops
July 1978
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M E GURTIN AND R C MACCAMY
Population dynamics with age dependence

1 CLASSICAL THEORIES

The simplest model of population dynamics is based on the Malthusian 1aw+

P = &P (6 = constant),

where P(t) 1is the total population at time t and & 1is the growth
modulus.  This law is clearly inapplicable to situations in which the
population competes for resources, for in those situations & should depend
on the size of the population: the larger the population, the slower should
be its rate of growth.

To overcome this deficiency in the Malthusian law, Verhulst [2,3] assumed

that
p = (8¢ - weP)P (8g,wp = constant). (1.1)

For ¢&¢ and wp positive this differential equation has a stable
equilibrium point Po=3do/we, and populations with P(0) <P, grow
monotonically to Py as t — e°.  The solution of (1.1) has been applied,
with remarkable success, to fit the growth curves of various types of

popu]ations.TT

*Ma]thus [1],p.13, asserts that: "Population, when unchecked, increases in
a geometrical ratio.”

see, e.g., Lotka [61, pp. 66-76.



2 LINEAR THEORY WITH AGE DEPENDENCE

(a) Basic Equations The chief disadvantage of the models of Malthus and

Verhulst is that they yield no information whatsoever concerning the distri-
bution of ages in the population and are, in fact, based on the tacit
assumption that the birth and death processes are independent of age.

To discuss age dependence we introduce the age distribution o(a,t).

This field represents the density of individuals of age a at time t; when

integrated over aH-f ages it yields the total population P(t):

oo

P(t) = Jp(a,t)da. (2.1)

0

Consider the group of individuals who are of age a at time t. If € 1s

increased by h units, these individuals age by h units; thus

Do(a,t) = Tim 2L2*NE¥N) - 0(a,t) (2.2)

hv0

is the rate at which the population of this group is changing in time. Of

course, when p is differentiab]e,T*

Dp = Pa + pt.

Let o(a,t) denote the population supply; that is, the number of
individuals, per unit age, of age a added to the population at time t.

Balance of population then requires that

Do = o. (2.3)

TFor convenience, we allow all ages in the interval [0,).

TTSubscripts denote partial differentiation with respect to the corresponding
argument.
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We assume that the supply o is due only to deaths (and hence is negative).
In fact, we assume that (for each a) o(a,t) is proportional to the density

p(a,t) with constant of proportionality independent of time:

o(ast) = -u(a)e(a,t).

With this assumption equation (2.3) takes the form

Dp(a,t) + u(a)p(ast) = 0. (2.4)

We call wu(a) = 0 the survival function. Of importance is the

probability
a
m(ag,a) = exp{-fu(a)da} (2.5)
ap

of an individual of age a, T1iving to age a.

The quantity
B(t) = o(0,t) (2.6)

is the birth-rate at time t. We assume that the birth process is governed

by a renewal equation of the form

{oe]

3(t) = [B(a)o(a,t)da, (2.7)

0

where B(a) = 0, called the maternity function, is the expected number of

children (per unit age and population) to be born to an individual of age

a. If we multiple g(a) by w(0,a), the probability of living to age a,

and integrate over all ages we get the net reproduction rate

mSee, €.9., Andrewartha and Birch [12], where curves of B(a) and w(0,a)
are given for the vole mouse (microtus agrestis) and for the rice weevil
(calandra oryzae).



R = Jﬂ(o,a)e(a)da, (2.8)

which is the expected number of offspring to be born to an individual.
Equations (2.4) and (2.7) are the basic equations of the linear theory.L

To these equations we adjoin the initial condition
p(a,0) = ¢(a), (2.9)

where ¢ is the prescribed initial age distribution.

(b) The Integral Equation We now establish an important alternative

formulation of the above system by integrating the partial differential
equation (2.4) along characteristics. Thus let p be a solution of (2.4),

(2.7), and (2.9), let ag,ty; >0, and let

o(h) = p(ag +hyty+h), u(h) = u(ap+h).

Then (2.2) and (2.4) imply that

+u(h)o = 0,

o_|o_
=|o|

and hence

p(ag+h,toth) = p(ag,te)m(ag,ao+h),

where we have used (2.5). This relation gives the values of p at all

points on the characteristic through (ao,ts) in terms of the value of o

+The basic ideas underlying this theory are due to Sharpe and Lotka [4] (see
also Lotka [ 6], McKendrick [ 7], Kermack and McKendrick [ 8,91, Rhodes [10],
Scherbaum and Rasch [13 ], Fisher [14], von Foerster [15], Lopez [16]1,
Fredrickson and Tsuchiya [17], Trucco [18], Fredrickson, Ramkrishna, and
Tsuchiya [19], Keyfitz [20], Rubinow [21] , Crow and Kimura [ 22 ], Coale [24],
Langhaar [25], Pollard [27]).

4



at (ao,to). In particular, if we take (aog,to) = (a-t,0) and h=t, we

conclude, with the aid of (2.9), that
p(a,t) = ¢(a-t)m(a-t,a) (a =1t). (2.10)
On the other hand, the substitutions (ap,tp,)=(0,t-a) and h=a Tead to
p(a,t) = B(t-a)n(0,a) (t >a). (2.11)

We have yet to use the birth law (2.7); 1if we substitute (2.10) and (2.11)

into (2.7) we arrive at the following linear Volterra integral equation for

@
—
t+
~
n

t
JH(O,a)B(a)B(t -a)da+o(t), (2.12)

o)

Jﬂ(a,a+-t)8(a4-t)¢(a)da (2.13)

0

L=
—
+
~
1

depends only on the initial data ¢. Conversely, if B satisfies (2.12),
then o defined by (2.10) and (2.11) satisfies our original system (2.4),

(2.7) and (2.9).

(c) Some Simple Solutions By a persistentJr age distribution we mean a

product solution of (2.4) and (2.7):

o(a,t) = A(a)T(t).

We may, without loss in generality, add the requirement that

*In the 1iterature solutions of this type are called stable.



then T(t) becomes the total population P(t) and
po(a,t) = A(a)P(t). (2.14)

Thus for any persistent age distribution the proportion o(a,t)/P(t) of the
population of age a 1is independent of time. If we substitute (2.14) into

(2.4) and (2.8), we easily verify that

A(a) = Ce P%r(0,a) (C = constant),

(2.15)
P(t) = PoePt

with p a solution of
fn(o,a)e(a)e'pada = 1. (2.16)

0
Note that, by (2.16), p=0, p <0, or p >0 accordingly as the net
reproduction rate (2.8) satisfies R=1, R<1, or R>1. Thus, for

R=1, (2.14) reduces to the equilibrium age distribution

p(a) = Bm(0,a)
with B the (constant) birth-rate.

(d) Asymptotic Behavior of So]utions+ The integral equation (2.12) is

easily analyzed by means of Laplace transforms. We write

£(s) = Je_Stf(t)dt

0

for the Laplace transform of a function f. If we transform (2.12) and use

TThis section follows Hoppensteadt [30]1.  See also Lotka [ 51, Feller [ 11,
23] and Coale [24].
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the convolution theorem, we arrive at the expression

[1-k"(s)]B™(s) = ¢7(s), (2.17)
where

k(a) = m(0,a)B(a).

Equation (2.17), although formal, can be used under appropriate hypotheses to
establish the existence of a solution to (2.12). Let us assume that

s€Li(®") (®R" =10,0)) and
g(a) =0 for a=a,~>0.

The first assumption is simply the requirement that the initial population be
finite, while the second asserts that there be no reproduction for ages
greater than a,. The second condition insures that both k and & (cf.
(2.13)) have compact support; hence k"(s) and ®7(s) are entire
functions of s, and both tend to zero as s — o in &e(s) =8 for any
O

Now define B”(s) by the formula

B™(s) = 27(s) :
1-k"(s)

then B”(s) 1is a meromorphic function of s with poles at exactly those

values of s which satisfy

1=k (s) = J:-Stn(o,t)s(t)dt

0
(cf. (2.16)). Since k™°(s) — 0 as s — < in Ge(s) =0, it follows
that there is an s, such that B”(s) 1is analytic in ®e(s) = s,. It

therefore makes sense to define B(t) through the complex inversion formula



