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PREFACE

The notion of a fibre bundle first arose out of questions posed in the 1930s
on the topology and geometry of manifolds. By the year 1950 the defini-
tion of fibre bundle had been clearly formulated, the homotopy classifica-
tion of fibre bundles achieved, and the theory of characteristic classes of
fibre bundles developed by several mathematicians, Chern, Pontrjagin,
Stiefel, and Whitney. Steenrod’s book, which appeared in 1950, gave a
coherent treatment of the subject up to that time.

About 1955 Milnor gave a construction of a universal fibre bundle for
any topological group. This construction is also included in Part I along
with an elementary proof that the bundle is universal.

During the five years from 1950 to 1955, Hirzebruch clarified the notion
of characteristic class and used it to prove a general Riemann-Roch theorem
for algebraic varieties. This was published in his Ergebnisse Monograph.
A systematic development of characteristic classes and their applications
to manifolds is given in Part III and is based on the approach of Hirze-
bruch as modified by Grothendieck.

In the early 1960s, following lines of thought in the work of A. Gro-
thendieck, Atiyah and Hirzebruch developed K-theory, which is a gener-
alized cohomology theory defined by using stability classes of vector
bundles. The Bott periodicity theorem was interpreted as a theorem in
K-theory, and J. F. Adams was able to solve the vector field problem
for spheres, using K-theory. In Part II an introduction to K-theory is
presented, the nonexistence of elements of Hopf invariant 1 proved (after
a proof of Atiyah), and the proof of the vector field problem sketched.

I wish to express gratitude to S. Eilenberg, who gave me so much en-
couragement during recent years, and to J. C. Moore, who read parts of

vii
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the manuscript and made many useful comments. Conversations with
J. F. Adams, R. Bott, A. Dold, and F. Hirzebruch helped to sharpen
many parts of the manuseript. During the writing of this book, I was
particularly influenced by the Princeton notes of J. Milnor and the lec-
tures of F. Hirzebruch at the 1963 Summer Institute of the American
Mathematical Society.

Dale Husemoller
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PRELIMINARIES
ON HOMOTOPY THEORY
i

&

In this introductory chapter, we consider those aspects of homotopy
theory that will be used in later sections of the book. This is done in outline
form. References to the literature are included.

Two books on homotopy theory, those by Hu [1]f and Hilton [1],
contain much of the background material for this book. In particular,
chapters 1 to 5 of Hu [1] form a good introduction to the homotopy
needed in fibre bundle theory.

1. CATEGORY THEORY AND HOMOTOPY THEORY

A homotopy f.: X — Y is a continuous one-parameter family of maps,
and two maps f and g are homotopically equivalent provided there is a
homotopy f. with f = fo and ¢ = f1. Since this is an equivalence relation,
one can speak of a homotopy class of maps between two spaces.

As with the language of set theory, we use the language of category
theory throughout this book. For a good introduction to category theory,
see MacLane [1].

We shall speak of the category sp of (topological) spaces, (continuous)
maps, and composition of maps. The category H of spaces, homotopy
classes of maps, and composition of homotopy classes is a quotient cate-
gory. Similarly, we speak of maps and of homotopy classes of maps that
preserve base points. The associated categories of pointed spaces (i.e.,
spaces with base points) are denoted spo, and Hy, respectively.

The following concept arises frequently in fibre bundle theory.

1.1 Definition. Let X be a set, and let ® be a family of spaces M
whose underlying sets are subsets of X. The ®-topology on X is defined
by requiring a set U in X to be open if and only if U n M is open in M for
each 1/ € &. If X is a space and if ® is a family of subspaces of X, the
topology on X is said to be ®-defined provided the ®-topology on the set X
is the given topology on X.

1 Bracketed numbers refer to bibliographic entries at end of book.



2 Fibre Bundles

For example, if X is a Hausdorff space and if ® is a family of com-
pact subspaces, X is called a k-space if the topology of X is ®-defined. If
M, C M, C --- C X is a sequence of spaces in a set X, the inductive
topology on X is the ®-topology, where & = {M,, M, ...}.

The following are examples of unions of spaces which are given the in-
ductive topology. :

RRCRC ---CR*C -+ CR>= UR»

1gn
O CC”C"'CC“’:lUC"
<n
ST, -4 G0 I O
<n
RIWC Bt vV e € a o Rre =1U /{5 g
<n
8y olf o5 7 BRI s 6 A TR o CP°°=IU cpr
- <n

Above, RP~ denotes the real projective space of lines in R**!, and C'P"
denotes the complex projective space of complex lines in C**. We can view
RP* as the quotient of 8* with  and —z identified, and we can view CP"
as the quotient of S?+! C Crtl, where the circle ze® for 0 < 6 < 27 is
identified to a point.

It is easily proved that each locally compact space is a k-space. The
spaces S®, RP~, and C'P* are k-spaces that are not locally compact.

2. COMPLEXES

The question of whether or not a map defined on a subspace prolongs to -

a larger subspace frequently arises in fibre bundle theory. If the spaces
involved are CW-complexes and the subspaces are subcomplexes, a satis-
factory solution of the problem is possible.

A good introduction to this theory is the original paper of J. H. C.
Whitehead [1, secs. 4 and 57]. Occasionally, we use relative cell complexes
(X,A), where A is a closed subset of X and X — A is a disjoint‘ﬁfﬁgn of
open cells with attaching maps. The reader can easily generalize the results
of Whitehead [1] to relative cell complexes. In particular, one can speak
of relative CW-complexes. If X" is the n-skeleton of a CW-complex, then
(X,X") is a relative CW-complex.

The prolongation theorems for maps defined on CW-complexes follow
from the next proposition.

2.1 Proposition. Let (X,4) be a relative CW-complex having one
cell C with an attaching map uc: I" > X = A U C, and let f: A — Y be

iaaiin il Sl e i
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Preliminaries on Homotopy Theory 3.

a map. Then f extends to a map g: X — Y if and only if fuc: 9I* — Y is
null homotopic.

A space Y is said to be connected in dimension n provided every map
8§71 — Y is null homotopic or, in other words, prolongs to a map B» — Y.
From (2.1) we easily get the following result.

2.2 Theorem. Let (X,A) be a relative CW-complex, and let ¥
be a space that is connected in each dimension for which X has cells. Then
each map A — X prolongs to a map X — Y.

As a corollary of (2.2), a space is contractible, i.e., homotopically equiv-
alent to a point, if and only if it is connected in each dimension.

The above methods yield the result that the homotopy extension prop-
erty holds for CW-complexes; see Hilton [1, p. 97].

The following theorems are useful in considering vector bundles over
CW-complexes. Since they do not seem to be in the literature, we give de-
tails of the proofs. ‘

1f C is a cell in a CW-complex X and if uc: B* — X is the attaching map,
then uc(0) is called the center of C.

2.3 Theorem. Let (X,A) be a finite-dimensional CW-complex.
Then there exists an open subset V of X with A C V C X such that 4
is a strong deformation retract of ¥V with a homotopy h.. This can be done
so that V contains the center of no cell C of X, and if Uy is an open subset
of A, there is an open subset Uy of X with Ux N A = U4 and h(Ux) C Ux
fort € I.

Proof. We prove this theorem by induction on the dimension of X.
For dim X = —1, the result is clear. For X» = X, let V*be an open subset
of X, with A C V' C X! and a contracting homotopy h}: V' — V'

_Let U’ be the open subset of V” with U’ n 4 = Uy and hy(U’) C U’ for
¢t € I. This is given by the inductive hypothesis.

For each n-cell C, let uc: B~ — X be the attaching map of C, and let
V!, denote the open subset ug!(V’) of dB* and Uy denote ug'(U’). Let
M denote the closed subset of all ty for t € [0, 1] and y € dB* — V.
There is an open subset V of X with VN X, = V' and ug!(V) = B" — M,
that is, y € ug!(V) if and only if y > 0 and y/|[ y || € V¢, and there is
an open subset Ux of V with Ux n X = U’ and y € ug'(Ux) if and only
ify #0andy/||yl|l € U

We define a contracting homotopy h:;: V — V by the following require-
ments: hy(uc(y)) = uc(2ty/|ly |l + (1 — 20)y) fory € B~ t € [0, 3],
he(z) = zforz € V', t € [0,2], he(x) = hbea(hy2(x)) fort € [3, 1], where
R/, is defined in the first paragraph. Then A is a strong deformation retract
~of V,and h(Ux) C Ux by the character of the radial construction. Finally,
we have uc(0) ¢ V for each cell €' of X. This proves the theorem.



4 Fibre Bundles

2.4 Remark. With the notation of Theorem (2.3), if Uys is cbn-
tractible, Ux is contractible.

2.5 Theorem. Let X be a finite CW-complex w1th m cells. Then X
can be covered by m contractible open sets.

Proof. We use induction on m. For m = 1, X is a point, and the state-
ment is clearly true. Let C be a cell of maximal dimension. Then X equals
a subcomplex A of m — 1 cells with C attached by a map uc. There are
Vi, ..., Vi_1 contractible open sets in A which prolong by (2.3) and (2.4)
to contractible open sets Vi, ..., Vm_1 of X which cover A. If V.. denotes
C = uc(int B*), then Vy, ..., V.. forms an open contractible covering of X.

2.6 Theorem. Let X be a CW-complex of dimension n. Then X
can be covered by n + 1 open sets Vy, ..., V, such that each path com-
ponent of V; is contractible.

Proof. Fér n = 0 the statement of the theorem clearly holds, and we
use induction on n. Let V§, ..., V4 be an open covering of the (n — 1)-
skeleton of X, where each component of Vi is a contractible set. Let V be
an open nelghborhood of X! in X with a contracting homotopy leaving
X1 elementwise fixed h;: V. — V onto X Using (2.3), we associate
with each component of V% an open contractible set in V. The union of
these disjoint sets is defined to be V.. Let V', be the union of the open n cells
of X. The path components of V', are the open n cells. Then the open cover-
ing Vo, ..., V, has the desired properties.

3. THE SPACES MAP (X,Y) AND MAP, (X,Y)

For two spaces X and Y, the set Map (X,¥) of all maps X — Y has
several natural topologies. For our purposes the compact-open topology
is the most useful. If (K,V ) denotes the subset of all f € Map (X,Y) with
f(K) C Vior K C X and V C Y, the compact-open topology is generated
by all sets (K,V ) such that K is a compact ‘subset of X and V is an open
subset of Y.

The subset Map, (X,Y) of base point preserving maps is given the sub-
space topology.

The spaces Map (X,Y) are useful for homotopy theory because of the
natural map

9: Map (Z X X, Y) — Map (Z, Map (X,Y))

which assigns to f(z,2) the map Z — Map (X,Y), where the image of
2 € Z is the map = > f(z,2). This map

Map (Z X X, Y) — Map (Z, Map (X3 Y3) )
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is a homeomorphism onto its image set for Hausdorff spaces. Moreover
we have the following proposition by an easy proof.

3.1 Proposition. For two spaces X and Y, the function
6:Map (Z X X, Y) — Map (Z, Map (X,Y))

is bijective if and only if the substitution function ¢: Map (X,Y) X X - Y,
where o( f,x) = f(z), is continuous.

The substitution function o: Map (X,¥Y) X X — Y is continuous for
X locally compact. By applying (3.1) to the case Z = I, the closed unit
interval, we see that a homotopy from X to Y, thatis,amap X X I — Y,
can be viewed as a path in Map (X,Y).

A map similar to 8 can be defined for base point preserving maps de-
fined on compact spaces X and Z, using the reduced product Z A X =
(Z X X)/(Z V X). Here Z \/ X denotes the disjoint, union of Z and X
with base points identified. The space Z \V X is also called the wedge
product. The map corresponding to 8 is defined:

Map, (Z A X, Y) — Map, (Z, Map, (X,Y))

It is a homeomorphism for Z and X compact spaces or for Z and X two
CW-commplexes.

Let 0 be the base point of I = [0, 1], and view 8! as [0, 1]/{0, 1}. The
following functors spy — spo are very useful in homotopy theory.

3.2 Definition. The cone over X, denoted C(X), is X A I; the
suspension of X, denoted S(X), is X A 8'; the path space of X, de-
noted P(X), is Map, (I,X); and the loop space of X, denoted 2(X),
is Map, (S1,X). '

A point of C(X) or S(X) is a class (z,t) determined by a pair
(zt) € X X I, where (zot) = (x,0) = base point of C(X) or S(X)
and, in addition, (z,1) = base point of S(X). If f: X — Y is a map,
C(f) ({x)) = (f(z),t) defines a map C(f): C(X) — C(Y), and
S(f)({z,t)) = (f(z),t) defines a map S(f): S(X) — S(Y); with these
definitions, C: spy — spo and S: spy — spo are functors. Also, we con-
sider the map w: X — C(X), where w(z) = (z,1). Then S(X) equals
C(X)/w(X). Since 8! is [0,1] with its two end points pinched to a point,
one can easily check that the equal sets S(X) and C(X)/w(X) have the
same topologies.

Path space P(X) can be viewed as the subspace of paths u: I — X
such that u(0) = =z, and 2(X) as the subspace of paths u: I — X such
that u(0) = u(1) = =z If f: X — Y is a map, then P(flu = fu
defines a map P(f): P(X) — P(Y), and Q(f)u = fu defines a map
Q(f): (X) — Q(Y). With these definitions, P:sp, — spo and Q: spo — spo



6 Fibre Bundles

are functors. Also, we consider the inap x: P(X) — X, where »(u) = u(1).
Then 2(X) equals =~*(xo) as a subspace.

3.3 Proposition. The functions w: 1s, — C and x: P — 1, are
morphisms of functors.

Proof. If f: X — Y is a map, then w( f(z)) = (f(z),1) = C(f)w(z)
for each z € X, and fr(u) = fu(l) = x(P(f)u) for each u € P(X).

3.4 Proposition. The following statements are equivalent for a base
point preserving map f: X —

(1) The map f is homotopic to the constant.
(2) There exists a map g: C(X) — Y with gw = f.
(3) There exists a map h: X — P(Y) with xh = f.

Proof. Condition (1) says that there is a map f*: X X I — Y with
f*(z,0) = o, f*(z, 1) = f(z), and f*(xo, ) = yo. The existence of f* is
equivalent to the existence of g: C(X) — Y, where g(z,1) = f(x). The
existence of f* is equivalent to the existence of h: X — P(Y), where

h(z) (1) = f(z).

3.5 Proposition. The spaces C (X) and P(X) are contractible.

Proof. Let h,: C(X) — C(X) be the homotopy defined by h,((z,t)) =
(z,st). Then h, is the identity, and h, is constant. Similarly, let k,: P(X) —
P(X) be the homotopy defined by k,(u) (t) = u(st).

As an easy application of Proposition (3.1), we have the next theorem.

3.6 Theorem. There exists a natural bijection «: [S(X),Y]o —
[X, @(Y)Jo, where o[ f(z,t)] = [(6f) (z) (1) ].

4. HOMOTOPY GROUPS OF SPACES

Let [ X, Y Jo denote base point preserving homotopy classes of maps X — Y.
A multiplication on a pointed space ¥ is a map ¢: ¥ X ¥ — ¥. The map
0 defines a function ¢x: [X,Y ]y X [X,¥ ]y — [X,Y ], for each space X,
by composition. If ([X,¥ Jo;¢x) is a group for each X, then (Y,¢) is called
a homotopy associative H-space. The loop space @Y is an example of a
homotopy associative H-space, where ¢: QY X QY — QY is given by the
following relation:

u(2t) for 0=t

IIA
e

¢ (up) () = :
v(2t — 1) for 2 =t

IIA

i
A comultiplication on a pointed space X is a map y: X — X V X. The

map ¢ defines a function ¢¥: [X,YJs X [X,Y ]y — [X,Y ]o for each space " -

Y, by composition. If ([X,Y 7, ¢¥¥) is a group for each Y, then (X ¥)



