Drug Therapy in the Neonate and Small Infant

Edited by Tsu F. Yeh, M.D.

Drug Therapy in the Neonate and Small Infant

Copyright Sed 955 by Year Book Medical Endishers, Inc.
All, rights, reserved. Not part of this publication may be reproduced, stored in a retineval system, or (suitable), in any form or by any decay, electronic, mechanical, photocopying, recording, or utherwise without pilo wived batical mission from the publisher. Printed in the U. (Yd. batical of America.)

Tsu F. Yeh, M.D.

Associate Professor of Pediatrics
University of Illinois at Chicago
Deputy Chairman, Division of Neonatology
Cook County Children's Hospital
Chicago, Illinois

615.5'8'088094

I ride An endelder him madein will

YEAR BOOK MEDICAL PUBLISHERS, INC.
CHICAGO

Frag Therapy in the Neonate and Small Infant

Copyright © 1985 by Year Book Medical Publishers, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission from the publisher. Printed in the United States of America.

0 9 8 7 6 5 4 3 2 1

Main entry under title: Pediatri Pediatri Associate Profession of Pediatri Pediatri

Drug therapy in the neonate and small infant.

County Children's Hospital, sebni esbulanl

1. Pediatric pharmacology. 2. Infants (Newborn)—Diseases—Chemotherapy. 3. Infants—Diseases—Chemotherapy. I. Yeh, Tsu F. [DNLM: 1. Infant, Newborn, Diseases—drug therapy. WS 420 D794]
RJ560.D788 1985 615.5'8'088054 84-15845
ISBN 0-8151-9767-5

The authors and publisher of this book have made every effort to ensure that the recommended drug dosage schedules presented are accurate and in accord with sound medical practice. However, since new research and experience may lead to changes in drug therapy, the reader is advised to verify drug dosage schedules in the manufacturer's product information insert prior to administration of the drug. This is particularly important with infants' and children's dosages, as well as for new or infrequently used drugs. In addition, many of the drug regimens included here have not yet received FDA approval for application in children. It remains the responsibility of the individual physician to determine the suitability for use of a particular drug in these situations.

Contributors Contributors

Lynn G. Beczak, R.N. Neonatal Nurse Practitioner Division of Neonatology Cook County Children's Hospital Chicago, Illinois

Rama Bhat, M.D.
Assistant Professor of Pediatrics
University of Illinois College of Medicine
Chicago, Illinois

Ian Carr, M.A., M.B., B. Chir. (Cantab)
M.B., B.S. (Lond)
Professor of Pediatrics
University of Health Sciences/
The Chicago Medical School
Chairman, Division of Pediatric Cardiology
Cook County Children's Hospital
Chicago, Illinois

Cheng T. Cho, M.D., Ph.D.
Professor of Pediatrics
University of Kansas
College of Health Sciences and Hospital
Kansas City, Kansas

Michael E. Evans, Ph.D.
Associate Professor of Pharmacology
University of Illinois College of Medicine
Chicago, Illinois

Howard A. Fox, M.D.
Professor of Pediatrics
University of Kansas
College of Health Sciences and Hospital
Kansas City, Kansas

Arthur Garson, Jr., M.D.

Associate Professor of Pediatrics and
Medicine
Director, Electrocardiography Laboratory
The Lillie Frank Abercrombie Section of

Cardiology
Department of Pediatrics
Baylor College of Medicine and Texas
Children's Hospital
Houston, Texas

Hilda Goldbarg, M.D.
Director, Pediatric Neurology
Cook County Children's Hospital
Assistant Professor of Pediatrics
University of Health Sciences/
The Chicago Medical School
Great Lakes, Illinois

Norman M. Jacobs, M.D.
Director, Section of Pediatric Infectology
Cook County Hospital
Clinical Assistant Professor of Pediatrics
University of Illinois College of Medicine
Chicago, Illinois

Renu Jain, M.D.
Senior Fellow
Division of Neonatology
Cook Country Children's Hospital
Chicago, Illinois

Eunice G. John, M.D.
Associate Professor of Pediatrics
Director, Division of Pediatric Nephrology
University of Illinois College of Medicine
Chicago, Illinois

Kwang-Sun Lee, M.D.
Associate Professor
Section in Neonatology
Department of Pediatrics
The Wyler Children's Hospital
University of Chicago
Chicago, Illinois

Lawrence D. Lilien
Attending Physician
Division of Neonatology
Cook County Children's Hospital
Assistant Professor of Pediatrics
University of Illinois College of Medicine
Chicago, Illinois

Julie A. Luken, M.D. Associate Director, Pediatric ICU Cook County Children's Hospital Assistant Professor of Pediatrics University of Illinois College of Medicine Chicago, Illinois

Albert D. Moscioni, Ph.D. Research Associate Section in Neonatology Department of Pediatrics The Wyler Children's Hospital University of Chicago Chicago, Illinois

William Oh, M.D. Professor of Pediatrics Brown University Program in Medicine Department of Pediatrics of Carable Over

Women & Infants Hospital of Rhode Island Providence, Rhode Island

Hemendra B. Patel, M.D. Senior Fellow Division of Neonatology Cook County Children's Hospital Chicago, Illinois

Rosita S. Pildes, M.D. Chairperson, Division of Neonatology Cook County Children's Hospital Professor of Pediatrics University of Illinois College of Medicine of Neonatokogy Chicago, Illinois

Attending Physician leha, M.D. Division of Neonatology Cook County Children's Hospital Sambasivarao Voora, M.D. Assistant Professor of Pediatrics Attending Physician Dns 20019128 https://doi.org/10.1000/ University of Health Science/The Chicago Division of Neonatology Medical School Great Lakes, Illinois

Deryani S. Raval, M.D. Attending Physician Department of Redistracs Division of Neonatology Cook County Children's Hospital Assistant Professor of Pediatrics and Discoversion University of Illinois College of Medicine Lawrence D. Lilien. Chicago, Illinois

Maria Serratto, M.D. Professor of Pediatrics University of Illinois College of Medicine Cardiac Catheterization Laboratory Division of Pediatric Cardiology Cook County Children's Hospital Chicago, Illinois

Philip W. Shaul, M.D. Fellow in Neonatology Women & Infants Hospital of Rhode Island Providence, Rhode Island

Gopal Srinivasan, M.D. Attending Neonatologist Cook County Hospital Associate Professor of Medicine

University of Health Sciences/The Chicago Medical School Great Lakes, Illinois

Reginald C. Tsang, M.D. Professor of Pediatrics, Obstetrics & Gynecology

Director, Division of Neonatology Department of Pediatrics do 8 .8 M. A.M. and and University of Cincinnati College of and 1) 2.8 .8 .W. Medicine Cincinnati, Ohio

Dharmapuri Vidyasagar Professor of Pediatrics Director of Nursery latigody a mathing vinuo 2000 Suma P. Pyati, M.D.

Director of Nursery

Department of Pediatrics University of Illinois College of Medicine Chicago, Illinois Professor of Fediatries

> Cook County Children's Hospital Andread Andread Assistant Professor of Pediatrics to roughlory stations University of Illinois College of Medicine of Management Chicago, Illinois

> > Contributors

University of Kansas

Division of Neorgeoleav Cook, County, Children's Hospital Assistant Professor of Pediators University of Mirrors College of Medicure

Chicago, Wilson.

Preface

The art of medicine changes rapidly and few areas reflect more frequent changes than therapy. Recent advances in neonatal therapy have kept pace with our increasing knowledge of the etiology and pathology of many neonatal diseases. Newer drugs, many of them quite specific in action, are employed clinically or experimentally. These rapid changes have created the need for a practical and concise summary of our current knowledge and understanding of the drugs commonly used in neonates and small infants. This book has been written to provide just such a summary for residents and pediatric practitioners.

Because adequate diagnosis is a prerequisite of effective therapy, this book is divided into chapters based on diagnostic entities but does not treat diagnosis in great detail. Each chapter begins with a brief discussion of pathogenesis, clinical and laboratory diagnosis, and general management followed by a more detailed discussion of drug therapy. The book concludes with a chapter on the drugs commonly used during medical, surgical, and radiologic procedures.

It is the authors' intention to give the physician responsible for the care of neonates and small infants more information on drug therapy than has been available in general pediatric textbooks. We hope this book and future editions reflecting the changes and advances in neonatal therapy will provide a firm base for the pediatric practitioner.

I am deeply grateful to the contributing authors who have made this volume possible and to Dr. Rosita S. Pildes, Chairman of the Division of Neonatology at Cook County Children's Hospital, for her encouragement. I thank Helen Coppage and Lula Johnson for the preparation of the manuscript and G. K. Hall Medical Publishers for their kind assistance in making this publication possible. Finally, I thank all the medical and nursing staff of the Cook County Children's Hospital Neonatal Intensive Care Unit whose questions and interest in caring for sick newborns are a continuous stimulus to me.

T. F. Yeh, M.D.

Contents

	Pharmacokinetics 3
	Michael E. Evans, Rama Bhat, and Dharmapuri Vidyasagar Dosage 3
	Pharmacokinetics 4
	Compartment Models 5
	Principles of Pharmacokinetics 8 bus loss
	Absorption 9 18 19 19 19 19 19 19 19 19 19 19 19 19 19
	Distribution 413 man 1 bins 1 votes 1 listendio
	Excretion 15
	Metabolism 15
	Chapter a Hypertension and a
Ma	ternal-Related Problems
	Chapter 2. Placental Transfer of Drugs 21 Renu Jain and Tsu F. Yeh Mechanisms of Placental Transfer 21 Factors that Affect Placental Transfer 22 Effects of Transferred Drugs on Neonates 24
	Chapter 3. Infants of Drug-Dependent Mothers 30 Gopal Srinivasan General Considerations 30 Drugs Associated with Neonatal Withdrawal Syndrome 32 Treatment 35 Long-Term Prognosis 39
	Chapter 4. Drugs in Breast Milk 40 Sambasivarao Voora and Tsu F. Yeh Excretion of Drugs in Breast Milk 40 Presence of Commonly Used Drugs in Breast Milk 47
	vii

Foreword

Preface

Introduction

Respiratory Disorders

Chapter 5. Apnea 57
Devyani S. Raval and Tsu F. Yeh
Pathophysiology 57
Causes 59
Classification 60
Management 61

Chapter 6. Resuscitation 72
Hemendra B. Patel and Tsu F. Yeh
General Considerations 72
Pathophysiology of Asphyxia 73
Principles of Neonatal Resuscitation 76
Drug Therapy during Resuscitation 77

Cardiovascular Disorders

Chapter 7. Persistent Pulmonary Hypertension of the Newborn 89

Tsu F. Yeh, Julie A. Luken, Lawrence D. Lilien, and Rosita S. Pildes

Fetal and Neonatal Pulmonary Circulation 89
Pathogenesis and Causes 90
Clinical Features and Diagnosis 91
Management 95
Prognosis 102

Chapter 8. Hypertension 105. Ian Carr

Measurement of Blood Pressure in the Neonate 105 Hypertension 106 Prognosis 114

Chapter 9. Pharmacologic Closure of Patent Ductus
Arteriosus 116

Tsu F. Yeh and Ian Carr
General Characteristics of Patent Ductus Arteriosus 116
Drug Therapy 121
Perspective 128

Chapter 10. Prostaglandin Therapy of Congenital Heart Disease 131

Prostaglandins 131
Therapy of Congenital Heart Disease 132

Chapter 11. Congestive Heart Failure 139 135 136 137 Maria Serratto

Pathophysiology 140
Clinical Findings 141
Differential Diagnosis 142
Treatment 143
Drug Treatment of Underlying and Ass

Drug Treatment of Underlying and Associated Pathologic Conditions 157 Prognosis 157

Chapter 12. Dysrhythmias 161 Arthur Garson, Ir.

Heart Rate: The Range of Normal 161
Complete Atrioventricular Block 162
Premature Atrial Contractions 164
Intrauterine Supraventricular Tachycardia 166
Neonatal Supraventricular Tachycardia 168
Atrial Flutter 171
Premature Ventricular Contractions 173
Ventricular Tachycardia 174
Neonatal Antidysrhythmia Drugs 176
Conclusion 177

Infectious Diseases

Chapter 13. Antibacterial Therapy 181 of the land Norman M. Jacobs

Antibacterial Susceptibility Testing 181
Susceptibility of Common Bacterial Pathogens 183
Neonatal Dosages and Antibacterial Pharmacokinetics 188

Chapter 14. Nonbacterial Infections 204
Cheng T. Cho and Howard A. Fox
Fungal Infections 204.
Herpes Simplex Virus Infections 211
Hepatitis B Virus 218
Toxoplasmosis 222
Chlamydial Infections 227
Giardiasis 229
Malaria 231
Trichomonas Vaginalis 234

Contents

Metabolic Disorders

Chapter 15. Hypoglycemia 241
Lawrence D. Lilien, Gopal Srinivasan, and Tsu F. Yeh
Hypoglycemia Defined 241
Measurement of Glucose 243
Differential Diagnosis 244
Diagnostic Evaluation 248
Treatment 249

Chapter 16. Hypocalcemia and Hypomagnesemia 256
Philip W. Shaul and Reginald C. Tsang
Normal Physiology of Calcium Homeostasis 256
Pathophysiology and Disease Classification of
Hypocalcemia 258
Clinical Findings and Diagnosis of Hypocalcemia 260
Treatment of Hypocalcemia 261
Normal Physiology of Magnesium Homeostasis 266
Pathophysiology and Disease Classification of
Hypomagnesemia 267
Clinical Findings and Diagnosis of Hypomagnesemia 268
Treatment of Hypomagnesemia 270
Relationship Between Hypomagnesemia and
Hypocalcemia 271

Renal and Electrolyte Disorders

Chapter 17. Renal Failure 277

Eunice G. John and Tsu F. Yeh

Clinical Features 278

Pathophysiology 280

Management 281

Adjustment of Medications in Renal Failure 287

Peritoneal Dialysis 293

Nutrition 294

Prognosis 296

Chapter 18. Diuretic Therapy 299
William Oh
Pharmacology 299
Indications for Diuretic Therapy 301
Dosage and Administration 303

Foreword

During the past decade substantial progress has been made in laboratory and clinical research studies related to drug therapy in neonates, infants, and children. Some of these advances have come through better understanding of the pathophysiology of the specific conditions treated. An appreciation that neonates may not dispose of drugs in the same manner as older infants and children has led to major improvements in the study of drugs and their metabolites in minimal size samples. The provision of results to the clinician in a prompt fashion has made it possible to use drugs in a rational fashion. It is thus fitting that a monograph be written devoted to drug therapy in neonates and small infants.

Dr. Yeh and his colleagues have combined current knowledge of pharmacokinetics with pathophysiology of the disease process with a practical approach to the sick infant. The authors have vast clinical experience in neonatal intensive care and are well aware of the numerous problems faced by physicians involved in the care of these infants. I am privileged to have been able to play a small part in the development of this monograph.

R. S. Pildes, M.D.
Chairman
Division of Neonatology
Cook County Children's Hospital
Professor of Pediatrics
College of Medicine
University of Illinois
Chicago, Illinois

Neurologic Disorders

Chapter 19. Seizures 307
Hilda Goldbarg and Tsu F. Yeh
Causes 307
Pathophysiology 311
Biochemistry 312
Diagnosis 313
Clinical and Laboratory Manifestations 316
Current Therapy for Neonatal Seizures 318
Prognosis 324

Nutritional and Hepatic Disorders

Chapter 20. Parenteral Nutritional Therapy 329
Suma P. Pyati and Tsu F. Yeh
Pathophysiology of Malnutrition 329
Indications for Parenteral Nutritional Therapy 330
Techniques of Administration 336
Complications of Parenteral Nutrition 338
Monitoring During Parenteral Nutritional Therapy 341
The Team Concept 341

Chapter 21. Jaundice 345
Albert D. Moscioni and Kwang S. Lee
Methods for Controlling Serum Bilirubin Levels 345
Drugs that Accelerate Bilirubin Metabolism and
Elimination 345
Interference with Enteric Absorption Pathway 354

Drugs Used for Common Neonatal Procedures

Chapter 22. Drug Use in Medical, Surgical, and Radiologic Procedures 361

Renu Jain, Lynn G. Beczak, and Tsu F. Yeh
General Considerations 361

Drugs Used During Procedures in Neonates 362

Index 373

Contents

9061 11

I be art of medicine all arges capally and it, to as a fleet as at fire, great, alleringes that the rips. Eucons advances as accounted the appearance in many neonatal decease. Nower drugs in any other architectual decease. Nower drugs in any or them quite specific financially or experiment of the capital changes have created the need it is a practiculum coincide auminary of our coincident throwledge and understanding of the drugs common as each to enternates and small interest. This hook has he in verten to possess for every such a summary for resulting and podiates as partitioners.

Because edequate diagnosistic projections of effective in appearable back is divided and chapters assed on a egressic employment and treat diagnosis in great detail. Fach chapt the gint with every discussion of pathagenesis, chaired and laboratory unanosis. The properties of the assistence of the existing of the action of the action. The book concludes with the hapter on the characterisms.

If is the authors increased to level the space a larger to the formal to the first the care of incandes and a pall maintains according to the constant of the first than has been savailable in general pudation to the control to the control book and future adjugate a fleeting the shall report to a first has a factor pall for a first has a factor pall for a first has a factor and for a first has a factor and first the control of the control

this volume gossibil, and or for Rosinis. Parties of menum, or Disham of Neonatology at Cook when the highest of menum and Neonatology at Cook when the highest of longs of and the manuscreet med to be trained to hear and the manuscreet med to be trained. Provide the find assistance in maleng that publication assistance in maleng that publication assistance in maleng that publication assistance in medical malengation of the Cook Courty of the Alegarat medical and moving out of the Cook Courty of the court and the Alegaration and the courter of the constant intensive O to that who Court on the court of the cook Courts and the courts of the constant of the court of the court

Matternal-Edition

From to be the anest apply take as the product to short state of the best correcte with a mumber of the such as corrected that the positions for drug kinds. It should be such as the result of the positions of t

Factors Modulating Drug Therapy and Pharmacokinetics

Michael E. Evans Rama Bhat Dharmapuri Vidyasagar

The goal of drug therapy is to produce an appropriate and desired pharmacologic effect in each patient. This requires the administration of an appropriate dosage that accounts for individual variations in genetic makeup, disease processes, and patient history—all of which may influence the disposition and biological effects of the drug. The effects of most therapeutic agents are related to the drug concentration at the site of action, the length of time the concentration is maintained, and the rate at which active levels are achieved. Thus the major factors that modulate individual variability in drug response are drug disposition in the body and sensitivity of the body to the drug. In general, although individual differences to drug response do exist at the molecular level, these are often of lesser magnitude than those resulting from individual variation in drug disposition. In this respect, therefore, age-related changes in drug disposition are of major concern in drug therapy.

Dosage

Until 15 to 20 years ago drug dosing in infants was empirically based on several rules using weight, height, age, or body surface area to calculate the neonatal dose as a fraction of the adult dose. These parameters are important correlates of many physiologic functions in development that change in accordance with body weight (e.g., lean body mass), body length (e.g., long axis of the heart), or body surface area (e.g., oxygen uptake and basal metabolic rate). Although none of these rules are ideal in neonatal dose determination, body surface area

appears to be the most applicable as this parameter has been shown to best correlate with a number of physiologic parameters that have importance for drug kinetics. It should be noted that significant differences in calculated dosage may arise depending on the method selected. For example, the full-term neonate ratio of body surface area to body weight is more than twice the adult value; in the premature infant it can exceed 4 times the adult value. Thus a neonatal medication dosage calculated on the basis of this ratio would be twice as large as that calculated on the basis of body weight. The use of body surface area in dose determination is not optimal either, however, as the relative weight of various tissues and organs changes significantly during development.

Differences in pharmacodynamic aspects of drugs in the neonate also may complicate the use of drugs in pediatrics, as demonstrated by the diminished responsiveness of the cardiovascular system to digitalis, which is associated with a decreased number of receptor sites in the neonate (Boerth 1975).

Pharmacokinetics

It is generally accepted that the newborn cannot be treated therapeutically as a small adult. It should also be appreciated that the qualitative differences between infants and adults in anatomic composition and physiologic functions that contribute to the altered disposition of drugs in the neonate are not always uniform in development. Furthermore, the great variability in kinetic properties (absorption, protein binding, metabolism, distribution, and excretion) according to birth weight and gestational age and the possible existence of abnormalities and pathologic syndromes further complicate the therapeutic approach in the pediatric patient.

The science of pharmacokinetics involves the application of mathematical and biochemical techniques to describe the disposition of chemicals. The physiologic factors that determine the concentration and duration of a chemical at the local site of action are absorption, distribution, and elimination. In general the rate for each of these factors is well described by first-order exponential kinetics in which the absolute rate of the process is proportional to the concentration. The higher the chemical concentration, the higher the absolute rate of the process, and as the concentration becomes smaller, the absolute rate of the process decreases proportionally. On a proportional scale (i.e., the absolute amount of the drug that is absorbed, distributed, or eliminated per unit time divided by the total amount of drug available

for this process) the rate of the process under first-order kinetics is a fixed value.

This principle is illustrated by the equation $\frac{dx}{x} = Kdt$, where $\frac{dx}{dt}$ is the change in x per unit time (t) and x is the absolute concentration at time (t). A negative sign is used to indicate loss of x. Thus for a firstorder process the half-life of the reaction is dependent on a fixed-rate constant (K) and independent of concentration (x). Processes that generally follow first-order kinetics include passive diffusion or filtration across membranes and metabolism. These processes underlie the physiologic parameters of absorption, distribution, and renal clearance. In first-order kinetics the rate of decrease is such that the time required for a specified percent loss is a constant and independent of the starting concentration. However, not all substances follow first-order (fixedrate constant) kinetics. The elimination-rate constant, for example, can become smaller as dose or serum concentrations become larger, resulting in dose-dependent elimination kinetics. Ethanol, aspirin, and phenytoin are three common examples of chemicals that exhibit a dosedependent elimination in the therapeutic range. As the dosage is increased for these compounds, the elimination half-life is increased and the plateau steady-state concentration is disproportionally increased (Wagner 1975). This deviation from first-order kinetics is characteristic of a saturation process in which the rate of the reaction becomes limited owing to a finite biochemical/physiological capacity and approaches a fixed value (zero-order kinetics). Explanations for zero-order kinetics include possible inhibitory effects of metabolites, saturation of a ratelimiting enzyme involved in membrane transport, or metabolism of a compound.

Compartment Models

In a comprehensive treatment of chemical disposition, the structural complexity of the body and the multiplicity of ways in which it deals with foreign compounds can result in exceedingly complicated pharmacokinetic analyses. Fortunately many of the quantitative formulas that are dérived can be simplified through the use of compartment models. In these models the body is conceived as a series of compartments that have characteristic input and output rates for each particular chemical. A *compartment* is defined as a kinetically distinguishable "pool" in terms of the chemical concentration-time profile.

A realistic approach for describing the disposition of chemicals is the two-compartment open model shown in Fig. 1.1. This system designates an initial, rapid distribution for the chemical throughout a