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Preface

Approaches and current practices of use of cementitious materials for nuclear waste immo-
bilization are summarized in this book, with a focus on the most important aspects of cements
as nuclear wasteforms. The topics covered include an introductory background on nuclear
waste management, description of Portland cements and cements with mineral and chemical
admixtures, alternative cementitious binders, radioactive waste cementation and equipment
used, wasteform durability requirements and testing, and performance assessment.

Hydration of Portland cement as well as interaction of Portland cements with water and
soil are described in detail. Also covered are mineral and chemical admixtures, chemical
admixtures to control the structure and properties of Portland cements such as accelerators
and retarders, plasticizers, and super-plasticizers, air-entraining agents, water-retaining
agents and water permeability reducing admixtures, biocidal admixtures, mineral admix-
tures in the control of the composition, structure and properties of cements and mineral
admixtures from natural rocks and minerals. Alternative binders are considered including
calcium aluminate cements, calcium sulphoaluminate cements, phosphate cements such as
magnesium and calcium phosphate cements, as well as alkali-activated cements. Cement
properties relevant to waste immobilization are analysed including characterization and
testing.

Radioactive waste streams suitable for cementation are described including both aqueous
and organic waste, bulk and fragmented (dispersed) solid wastes as well as the description of
cement-based wasteform optimization. Waste cementation technology and equipment are
considered including methods of liquid and dispersed solid waste cementation and methods
for cementation of bulk solid waste. Quality control of technological processes and materials
obtained is discussed.

Cementitious wasteform durability requirements are examined along with the role of
material performance and expected performance of cements. Wasteform leaching parame-
ters and testing protocols such as IAEA/ISO 6961-82, ASTM C1220-98 (MCC-1), ANS-
2009 (ANS/ANSI 16.1) and ASTM C1662-10 are given. Long-term field tests of cementitious
materials are described as well as the effects of radiation, biological activities and role of
filling materials. Performance assessment gives a brief overview of historical disposal prac-
tice, disposal facility design, modelling approaches, and safety case developed for disposal
facilities.

Overall the book provides the reader with both a scientific and technological basis of
using cementitious materials for immobilization of nuclear waste.
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1

Introduction

1.1 Background of Nuclear Waste Problem

By definitions a waste is a material for which no further use is foreseen. For legal and regu-
latory purposes a radioactive (nuclear) waste is that waste which contains or is contaminated
with radionuclides at concentrations or activities greater than clearance levels as established
by the regulatory body. It is always recognized that this definition is purely for regulatory
purposes, and that material with activity concentrations equal to or less than clearance
levels is still radioactive from a physical viewpoint, although the associated radiological
hazards are considered negligible [International Atomic Energy Agency (IAEA), 2003a].
Over recent years large amounts of radioactive waste have been generated during the
production and application of radioactive materials both for peaceful and military purposes.
The knowledge of the hazard associated with exposure to these wastes led to the adaptation
of waste management strategies that relies on the concepts of containment and confinement.
In radioactive waste repository, confinement may be provided by the wasteform and its
container, whereas containment may be provided by the surrounding host rock (IAEA,
2013). The selection of the wasteform type and disposal option is determined based on
the hazard imposed by the wastes. Although containment and confinement concepts have
proven efficiency in isolating nuclear waste, there were some cases dating back to the early
1950s where radioactive wastes were disposed of unsolidified in unlined trenches. These
practices led to radioactivity leaks in many sites, such as in Hanford, Washington, USA.
The evaluation of the remediation costs and the hazard imposed from these practices on
human health and the environment resulted in recognition of the need to have more rigorous
confinement and containment strategies. This led to the development of new waste man-
agement systems which utilize volume reduction techniques and solidification/stabilization
technologies to produce stable wasteforms and implement the multi-barrier disposal concept
to ensure safe disposal of these wastes.

Cementitious Materials for Nuclear Waste Immobilization, First Edition. Rehab O. Abdel Rahman,
Ravil Z. Rakhimov, Nailia R. Rakhimova and Michael I. Ojovan.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.



2 Cementitious Materials for Nuclear Waste Immobilization

Currently safe management of nuclear wastes is a subject that is receiving considerable
attention from public and different governmental, regional and international bodies. This
recognition has not only stemmed from the huge volume of the cumulative wastes and the
diversity of their chemical, biological and radiological hazards but also because the public
relates their acceptance for new nuclear power programmes to their confidence in the waste
management practice (Abdel Rahman, 2012). In the following sections, the facilities that
generate nuclear wastes will be briefly introduced, different waste classification schemes
and waste management activities will be presented and matrix material for nuclear waste
immobilization will be highlighted.

1.2 Nuclear Industry Facilities

The nuclear fuel cycle (NFC) and radioisotope production and application facilities are
considered the main generators for nuclear wastes. The NFC includes all operations asso-
ciated with the production of nuclear energy, namely mining and milling, processing and
enrichment of uranium or thorium; manufacture of nuclear fuel; operation of nuclear
reactors (including research reactors); reprocessing of nuclear fuel; any related research
and development activities and all related waste management activities (including decom-
missioning). During the lifecycle activities of these facilities, different amounts of wastes
with varying characteristics are produced. Within the operational and decommissioning
phases only nuclear wastes are generated whereas other phases produce non-nuclear
wastes, for example soils from excavation, building materials and so on. Nuclear wastes
produced within the operational phase are usually characterized by their limited amounts;
on the other hand, a much larger volume of waste is generated during the decommission-
ing phase (IAEA, 2007). This section will introduce operational processes that take place
in different nuclear facilities and lead to generation of radioactive wastes, whereas the
wastes generated during the decommissioning phase of these facilities will be discussed
in Chapter 6.

1.2.1 NFC Facilities

The NFC refers to activities associated with the production of electricity using nuclear
reactors (IAEA, 2003a). They are classified based on the existence of recycling option
into two categories, namely open and closed NFCs, as illustrated in Figure 1.1 (Ojovan and
Lee, 2005). Facilities that operate from nuclear ore extraction to fuel loading into a nuclear
reactor are known as front-end NFC facilities; these include mines, mills, fuel enrichment
and fuel fabrication facilities. After using the fuel in the reactor, the facilities that deal with
used (spent) fuel and radioactive waste are referred to as back-end NFC facilities; they include
fuel storage and/or fuel reprocessing plants. The operation of each facility is associated with
the generation of different types of nuclear wastes. It is worth mentioning that nuclear materi-
als generally can pose chemical, radiological and flammability hazards. Accordingly, there
is a need to specify these hazards and implement certain safety measures to counter these
hazards. Table 1.1 lists the safety aspects associated with the hazard of nuclear wastes at NFC
facilities (IAEA, 2005a).
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Figure 1.1 Open and closed NFCs. Reproduced with permission from Ojovan and Lee, 2005.
© 2005, Elsevier

1.2.1.1 Mining and Milling Facilities

Mining uranium ore is the first step in any NFC, where uranium is extracted from a mine
and then concentrated in a mill. The uranium mill is usually located near the mine to
reduce shipping charges. The concentration processes involved include crushing, grinding,
leaching, precipitation, solvent extraction and ion exchange (Benedict et al., 1981). The
concentrate is composed of uranyl nitrate solution, [UOE(NOI)ZJ, and solid ammonium
diuranate, [(NH,),U,O.], which is known as yellow cake. The operation of these facilities
generates large amounts of solid wastes in the form of natural materials, that is displaced
soil, and radioactive contaminated tailings. The radioactivity content in tailings is above
the background level; usually they are returned to the pit from where the uranium ore was
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Table 1.1 Hazard identification at different NFC facilities

Facility Criticality Radiation Chemical toxicity Flammability
Mining/milling — XX XX X
Conversion X XX XX XX
Enrichment X XX XX XX

Fuel fabrication XX XX XX XX
Reprocessing XX XX XX XX

Storage XX XX — -
Transportation X XX X XX

X, hazard may be of concern; XX, hazard of concern.
Reproduced with permission from IAEA, 2005a. © 2005, IAEA.

originally extracted and the site rehabilitated for further use (see Section 6.4). In some
cases this operation is not economically feasible, so the tailings are stored then transported
to a long-term stable structure and the site is rehabilitated for further use (Alexander and
McKinley, 2007). Also, large volumes of effluent are generated during the operation of
mines and mills; historically these effluents were held in storage ponds and eventually
evaporated to solids (Benedict et al., 1981). Currently the treatment of these effluents and
their control is becoming a concern because of the strengthened regulatory requirements.
The main problems that arise when dealing with these effluents are due to their large vol-
umes and the nature of contaminants where both radioactive and non-radioactive toxicants
exist (IAEA, 2004).

1.2.1.2  Uranium Refining Facilities

Refining uranium concentrate is performed by purifying the concentrate, where chemical
impurities are removed, followed by conversion of purified concentrate into a suitable chem-
ical form. The purification is conducted by dissolving the concentrate in nitric acid and then
applying solvent extraction to remove impurities. Purified concentrate is then converted
to uranium trioxide (UO,) or uranium dioxide (UQ,), depending on the type of reactor. To
produce UO,, either thermal denitration (TDN) or ammonium diuranate (ADU) could be
used, where ammonium uranyl carbonate (AUC) is used to obtain UO,. TDN is a one-step
process from which fine UO, powder is produced. With ADU and AUC, the purified uranium
is subjected to precipitation, filtration and calcinations/calcinations with hydrogen: Figure 1.2
illustrates these processes. The wastes arising from refining processes are mainly generated
during the purification step. They include liquid effluent sludge, insoluble and filter aid, and
drums (IAEA, 1999a).

If enrichment is required, UO, will be transformed to uranium hexafluoride (UF,) according
to the following reaction;

Hy HF F,

U0, » UO, - UF, - UF, (1.1)

Figure 1.3 illustrates the sequence of the chemical process to produce UF,; these chemical
processes generate wastes in the form of solid calcium fluoride, calcium hydroxide, water
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Figure 1.2  Flowchart for the production of uranium trioxide and uranium dioxide. Reproduced
with permission from IAEA, 1999a. © 1999, IAEA

contaminated by uranium and gaseous wastes that contain UF, F, and HF (IAEA, 1999a,
2008). UF, is then directed to the enrichment plant to increase the percentage of uranium
fissionable isotope (**U) to the required ratio depending on the reactor type. There are
several technologies available for enriching uranium; these include electromagnetic iso-
tope separation, thermal diffusion, aerodynamic uranium enrichment process, chemical
exchange isotope separation, ion exchange process, the plasma separation process, gaseous
diffusion process, gas centrifuge process and laser isotope separation. Gas diffusion and
gas centrifuge are considered the most widely used commercial methods (IAEA, 2005a).
The enrichment process generate wastes in the form of depleted UF,, which can be con-
verted to stable, insoluble and non-corrosive U,O, that can be safely stored pending reuse
(IAEA, 2009a). '



