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< Preface %

With the growth of complex system science and the expansion of nanotech-
nology, there is increased need to distinguish between two related mechan-
isms, “self-organization” and “self-assembly,” occurring in physical and
biological systems. Basically, as pointed out in a recent issue of the journal
Complexity, self-organization is a nonequilibrium process; in contrast, self-
assembly leads toward equilibrium. Nevertheless, self-organization and
self-assembly are regularly used interchangeably, as both explain how collec-
tive order is developed from dynamic small-scale interactions [J.D. Halley,
D.A. Winkler, Consistent concepts of self-organization and self-assembly,
Complexity 14 (2008) 10-17]. Hence, in this book, all use of the term “self-
assembly” (which some chemists classify as either static or dynamic [Science
205 (2002) 2418-2421]) is here only intended within a “dynamic” sense; spe-
cifically, “dynamic” self-assembly corresponds to what biologists understand
as self-organization [Complexity 14 (2008) 10-17].

Stable gas nanoemulsions, existing in natural waters, represent self-assembled
coated microbubbles (also known as “gas-in-liquid emulsions™). Similarly, in
certain artificial media (namely, lipid dispersions modeled from natural microbub-
bles), stable nanoemulsions are also able to self-assemble (self-organize) readily.
(Consequently, the first (1986) and expanded second (2003) editions of a related
earlier book were entitled Stable Gas-in-Liquid Emulsions (with the subtitle
Production in Natural Waters and Artificial Media). Yet, this much-expanded
current book, that is, 12 chapters longer than the 2003 monograph, is more inclu-
sive in its scope and accordingly entitled Stable Nanoemulsions.) In this specific
case, the nanoemulsions comprise both “lipid-coated microbubbles (LCM)” (i.e.,
the gas-emulsion subpopulation) and “related lipid nanoparticles™ (i.e., a parti-
cle-like subpopulation including mostly colloidal liquid crystals). Various
measurements and other published findings indicate that the LCM’s structural
characteristics help drive and govern a continual and reversible (molecular and/
or supramolecular) lipid interchange, with the nanoparticle subpopulation, in these
self-assembling lipid nanoemulsions.

The term “LCM” is utilized, in this multidisciplinary book, to accurately
trace the chronological development (and functional conversion) of the
“LCM/nanoparticle-derived” colloidal system: (1) from its (modeling after
natural microbubble surfactant and) early biomedical application as an imag-
ing agent (in Chapters 1-12, which focus mainly on the less numerous
micron-scale colloidal species) into (2) the later adaptation of exactly the
same mixed-lipid (e.g.. Filmix™) colloidal system (in Chapters 13-27, which

vii



viii Preface

focus more upon the vastly more numerous nanoscale colloidal species) for
nanomedical application as a (LCM/nanoparticle-derived) drug-delivery vehi-
cle. In addition, as explained in the chapters, newer models of several selected
particle-size-analysis instruments have revealed that approximately 90% of
these LCM/nanoparticle-derived colloidal species are actually smaller than
200 nm in diameter, while over 99% of the same mixed-lipid colloidal species
(detectable via optical-particle-counter data) are documented to be smaller
than 300 nm in diameter.

In this book, much experimental data are reviewed in detail and updated,
along with the relevant current literature, which collectively demonstrate that
this type of stable lipid nanoemulsion (upon intravenous injection) is capable
of “active targeting” to tumors, and to certain lesion sites, via the process of
receptor-mediated endocytosis. Hence, this LCM/nanoparticle-derived lipid
formulation has been used successfully, in animals, as a drug-delivery agent that
actively targets antineoplastic drug (e.g., paclitaxel) against tumor cells that
commonly overexpress certain surface receptors, which fall within the category
known as “lipoprotein receptors.” Moreover, this LCM/nanoparticle-derived
lipid nanoemulsion contains no phospholipids, proteins, peptides, and carbohy-
drates, and no chemical modification of the drug (paclitaxel) is required. Hence,
this category of parenteral lipid nanoemulsion avoids various past problems
reported for earlier versions of (actively) targeted drug-delivery agents utilizing
such lipoprotein-receptor-mediated endocytic pathway(s). (Consequently, a
human clinical trial is now in preparation, by a pharmaceutical company, for tar-
geted drug delivery of paclitaxel to tumors in patients using an LCM/nanoparti-
cle-derived drug-delivery agent.) In addition, as detailed in later chapters of the
book, there are several noncancerous lesion/injury sites involving certain prolif-
erative processes (e.g., atherosclerosis) which include overexpression of cell-
surface lipoprotein receptors. Therefore, the scope of potential clinical trials,
which are applicable to the pharmaceutical category referred to as LCM/nano-
particle-derived lipid nanoemulsions, can now include the targeted chemother-
apy of hyperproliferative diseases, for example, atherosclerosis and CNS-injury
sites. In these last few chapters, several sections detail how one particular lipid-
nanoemulsion agent (Filmix®) in this pharmaceutical (LCM-related) category,
as well as a few other closely related protein-free parenteral lipid nanoemul-
sions, accordingly exhibit much (literature-supported) potential for providing
“actively targeted”” chemotherapy of atherosclerotic lesions in human subjects.
(Such targeted chemotherapy is also in harmony with goals of the current U.S.
National Nanotechnology Initiative, which include nanomedical approaches
to drug delivery that focus on developing nanoscale particles (or macromole-
cules) to improve drug bioavailability, that is, often using targeted nanoparticles
for delivering drugs with cell precision and less side effects.)

The book has been organized into six parts. Parts I and II (Chapters 1-8)
describe coated microbubbles in the biosphere, as well as various biochemi-
cal, geochemical, surface, and structural properties of natural microbubble
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surfactant. Next, artificial LCM and related lipid nanoparticles are described
in Part III (Chapters 9—11), while their utilization in biomedical studies with
animals is examined in detail in Part IV (Chapters 12-15).

Parts V and VI consist of completely new chapters (i.e., Chapters 16—27)
that contribute to a strong nanomedicine focus. These 12 chapters further ana-
lyze and characterize this type of self-assembling mixed-lipid nanoemulsion,
regarding LCM and especially its predominant mixed-lipid nanoparticle sub-
population. In addition, recent clinical studies with related parenteral (lipid)
nanoemulsions are described; this limited clinical review provides added
understanding of the development path leading to the human clinical
trials—evaluating these parenteral lipid nanoemulsions as new, (actively) tar-
geted, drug-delivery agents. Finally, throughout Parts V and VI, extensive
cross-references to the earlier chapters are provided in the text. Furthermore,
over 500 new literature references have been added by Parts V and VI, many
of which are very recent.

The underlying chemical and biomedical principles covered in each chap-
ter are presented in sufficient detail for this book to be useful to all interested
readers worldwide with a working knowledge of chemistry, physics, and biol-
ogy. Accordingly, the level of readership is intended to include graduate stu-
dents, researchers, and professional people from widely varying fields.
Furthermore, due to the many current and potential applications of stable lipid
nanoemulsions, the appropriate readership of this book is likely to be found in
industry, universities, government laboratories, and clinical facilities alike.

Thanks are due to the following colleagues for their collaboration on some
of the original investigations described in this book and/or their generous help
with various experimental measurements: Elisa Barbarese, William Barker,
J. Howard Bradbury, Kai-Fei Chang, Stephanie A. Ching, Michael A. Davis,
John F. Dunne, Donald C. Grant, Richard J. Guillory, Brendon C. Hammer,
Shih-Yieh Ho, Toyoko Imae, Jacob N. Israelachvili, Inam U. Kureshi, Kathleen
M. Nellis, Barry W. Ninham, Noboru Oishi, Richard M. Pashley, Neil S.
Reimer, P. Scott Rice, Cesareo Saiz-Jimenez, Richard H. Simon, Kent Smith,
Candra Smith-Slatas, Charles S. Springer, Ourai Sutiwatananiti, and Linda
Vaught. Finally other acknowledgments, in addition to those appearing in the
chapters, include permission for using quoted material appearing on p. 15,
Copyright® 1981 by the AAAS; p. 26, Copyright” 1972 by the ASME;
pp. 9. 12, 18, and 98, Copyright™ 1975, 1978, 1978, and 1974, respectively,
by the Pergamon Press, Ltd.; p. 271, Copyright® 1973 by Springer-Verlag;
pp. 271-272, Copyright 1993 by the American Chemical Society; and the
reprinting of Figure 12.1 on p. 216, Copyright 1991 by Sage Publications, Inc.

Joseph §. D’ Arrigo
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