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Preface to the Series
in Information and Computational Science

Since the 1970s, Science Press has published more than thirty volumes in its se-
ries Monographs in Computational Methods. This series was established and led by
the late academician, Feng Kang, the founding director of the Computing Center of
the Chinese Academy of Sciences. The monograph series has provided timely infor-
mation of the frontier directions and latest research results in computational mathe-
matics. It has had great impact on young scientists and the entire research community,
and has played a very important role in the development of computational mathemat-
ics in China. i

To cope with these new scientific developments, the Ministry of Education of
the People’s Republic of China in 1998 combined several subjects, such as computa-
tional mathematics, numerical algorithms, information science, and operations re-
search and optimal control, into a new discipline called Information and Computa-
tional Science. As a result, Science Press also reorganized the editorial board of the
monograph series and changed its name to Series in Information and Computational
Science. The first editorial board meeting was held in Beijing in September 2004, and
it discussed the new objectives, and the directions and contents of the new monograph
series.

The aim of the new series is to present the state of the art in Information and
Computational Science to senior undergraduate and graduate students, as well as to
scientists working in these fields. Hence, the series will provide concrete and system-
atic expositions of the advances in information and computational science, encom-
passing also related interdisciplinary developments.

I would like to thank the previous editorial board members and assistants, and all
the mathematicians who have contributed significantly to the monograph series on
Computational Methods. As a result of their contributions the monograph series
achieved an outstanding reputation in the community. I sincerely wish that we will
extend this support to the new Series in Information and Computational Science, so
that the new series can equally enhance the scientific development in information and
computational science in this century.

Shi Zhongci
2005.7
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This book grows out of the lectures the first author gave in the summer of 2002 in
the Institute of Computational Mathematics of Chinese Academy of Sciences. The
purpose of the lectures was to present a concise introduction to the basic ideas and
mathematical tools in the construction and analysis of finite element methods for
solving partial differential equations so that the students can start to do research on
the theory and applications of the finite element method after the summer course.
Some of the materials of the book have been taught several times by the authors in
Nanjing University and Peking University. The current form of the book is based
on the lecture notes which are constantly updated and expanded reflecting the
newest development of the topics through the years.

The finite element method is nowadays penetrating into almost every aspect
of the scientific and engineering applications. There have already been several
excellent monographs on the mathematical theory and applications of finite element
methods. In this book we do not present the results in the most general form
but rather in a form that we believe the extension to the general form would be
possible with minor efforts. The topics covered in the book reflect our own research
experiences and so many of the important aspects of finite element methods such
as nonconforming finite element methods and domain decomposition methods are
not touched. Nevertheless we hope the ideas and methods introduced in the book
will also be useful for the readers who are interested in other topics of finite element
methods.

The book consists of two parts. The first part includes the first six chapters and
the last chapter which present the fundamental theory of finite element methods
for solving the second order elliptic equations. In this part we consider the vari-
ational formulation of partial differential equations including Sobolev spaces, the
construction of finite element methods, the a priori error analysis of finite element
methods, the a posteriori error estimation and adaptive finite element methods,
the multigrid method, and the mixed finite element methods. The last chapter is
devoted to the implementation of the finite element method based on the MATLAB
PDE Toolbox. The second part of the book introduces three topics of active cur-
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rent research. We consider adaptive finite element methods for parabolic equations
in Chapter 7 and finite element methods for time-harmonic Maxwell equations in
Chapter 8. We introduce multiscale finite element methods in Chapter 9 which
play an increasingly important role in the simulation of fiow transport in hetero-
geneous porous media. The MATLAB codes in Chapter 10 can be downloaded at
the webpage http://lIsec.cc.ac.cn/ " zmchen/codes.html.

There exists a huge literature on the finite element methods. The references of
the book are far from being complete. At the end of each chapter we add some
notes on the references which are directly related to the material covered in the
book. Many of the important references are not included in the book. The readers
are encouraged to consult the monographs and the references cited in the book for
historical and further information.

The prerequisite of the book is the standard undergraduate course on functional
analysis and differential equations of mathematical physics. The results required
in the book on Sobolev spaces are summarized in Chapter 1 without proof. Our
experience shows that it is usually sufficient for the readers to understand the
theory of finite element methods without first knowing the proofs of the Sobolev
embedding theorem and the trace theorem. Except Chapter 1 the book is largely
self-contained. In very few places, the readers are referred to the literature for
results that are outside the scope of the book.

Finally we would like to thank our colleagues and collaborators for their in-
sights and discussions through the years. We wish to express our thanks to Ms.
Xianhua Meng for typing the manuscript. We also thank the Science Press for
their efforts to make the publishing of the book possible.

Zhiming Chen
Haijun Wu
March 5, 2010
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Chapter 1

Variational Formulation of Elliptic
Problems

In this chapter we shall introduce the variational formulation of the elliptic bound-
ary value problem
Lu=f in u=0 on 0, (1.1)

where € is a bounded open subset of R? (d = 1,2,3) and u : @ — R is the unknown
function. Here f :  — R is a given function and L denotes the second-order partial
differential operator of the form

N u\ & Bu -
b= 3 g (g ) + bl e
for given coefficients a;;, b;, ¢, 4,5 =1,2,--- ,d.

We shall assume the partial differential operator L is uniformly elliptic, that is,
there exists a constant 8 > 0 such that

d
Z aij(z)€:&; > 0)€>  for ae. z € Q and all £ € RY.

i,j=1

1.1 Basic concepts of Sobolev space

Let Q be an open subset in R?. We define C§°(£2) to be the linear space of infinitely
differentiable functions with compact support in . Let L. _(Q) be the set of locally

loc
integrable functions:

Ll () ={f: fe LY (K), V compactset K C interior Q}.
We start with the definition of weak derivatives.

Definition 1.1  Assumef € L] (R2),1 < ¢ < d, we say g; € L}, () is the weak
partial derivative of f with respect to z; in Q if

/f&p dw=— [ gpds, VeelR®.
a" O; Q
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We write
af : d af \*T
z;f_ —gh t=12,.-.,d, Vf:(a_;:”a—.’lfi)
Similarly, for a multi-index o = (a1, ag,- - ,Qg), o non-negative integers, with

length |a| = a1 +ag +--- + aq4, 8°f € LL (Q) is defined by

loc

[ onrede= 0 [ fo%pas, v ecp@),
Q o
where 8% = 851072 - - - 834.
Example 1.1 Letd=1,Q = (-1,1), and f(z) = 1 — |z|. The weak derivative of
[ is
{1, ifz<0,

9=\ -1, ifz>o0.

The weak derivative of g does not exist.

Definition 1.2(Sobolev space) For a non-negative integer k and areal p > 1, we
define

WEP(Q) = {u € LP(Q) : 8%u € LP(), for all |o] < k}.
The space is a Banach space with the norm

1/p
( > ||aau||;p(n)> , 1< p< oo,

|| €k
[0%u[ Loo (), P = +oo.

||u||w'm=(n) =

|<k|

The closure of C§°(Q) in W*P(Q) is denoted by WFP(Q). It is also a Banach
space. When p = 2, we denote

H*(Q) = W*(Q), H§(Q) = Wg2(Q).
The space H*(Q) is a Hilbert space when equipped with the inner product

(u, 'U)k,Q. = / %ud*vdz.

la|<k

Example 1.2 (1) Let 2 = (0,1) and consider the function u = z®. One easily
verifies that u € L*(Q) if @ > —1/2, u € HY(Q) if @ > 1/2, and u € H*(Q) if
a>k—1/2.

(2) Let @ = {z € R? : |z| < 1/2} and consider the function f(x) = In|In|z|.
Then f € W1P(Q) for p < 2 but f & L>(Q). This example shows that functions
in H'(Q) are neither necessarily continuous nor bounded.
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Now we consider the regularization of functions in Sobolev space. Let p be a
non-negative, real-valued function in C§°(R¢) with the property

/Rd p(r)dz =1, supp(p) C {r: |z| < 1}. (1.3)
An example of such a function is
1
Cel="-1 if |z] < 1
— ) ) 14
o) { 0, if |z] > 1, (14)

where the constant C is so chosen that [p. p(z)dz = 1. For € > 0, the function
pe(z) = € %p(z/€) belongs to C3°(R?) and supp(pe) C {z : |z| < €}. pe is called
the mollifier and the convolution

u@) = (pexu)(@) = [ pela—y)utu)dy (15)

is called the regularization of u. Regularization has several important and useful
properties that are summarized in the following lemma.

Lemma 1.1 (i) If u € LL_(RY), then for every € > 0, uc € C®°(R") and
8%(pe ¥ u) = (0%pe) * u for each multi-indez o
(i) If u € C(R?), then u. converges uniformly to u on compact subsets of R?;
(iii) If u € LP(R%),1 < p < oo, then u. € LP(R?), el o ray < llullpo(gay s and
iy i =l ey =0-
Proof (i) follows directly from (1.5).
(ii) is obvious by observing that

[ue(o) — u@)|< [ pole =) lula) ~ u(w)] dy

< (ma.xp)s—d/ lu(z) — u(y)| dy

ly—z|<e

and that u is uniformly continuous on compact sets.
To-show (iii), let p’ € R such that 1/p + 1/p’ = 1. Then by Hélder inequality

ltell o ety < {/Rd (/m [u()lpe(z ~ v) dy)p dx}l/p
S {/n (/n oI e(e =) dy) ' (/R pe(z =) dy)w dz}
- { L, [ stz - dydm}”"

=||ull Lr(re)- (1.6)

1/p
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For u € LP(R?) and any § > 0, we choose a continuous function v with compact
support such that |[u — v||La(rey < 6/3. From (i), [[ve — v||1orey < 6/3 for €
sufficiently small. By the triangle inequality and (1.6),

lue — ull Lo(rey < [ltte = VellLo(ra)y + lve — vl Lomay + [l — v]lLogey < 6. (1.7)
This completes the proof of (iii). O

In this book, a domain is referred to an open and connected set. The following
lemma will be useful in proving the Poincaré-Friedrichs inequality.

Lemma 1.2 Let Q be a domain, u € WP(Q), 1 < p < o0, and Vu =0 a.e. on
Q, then u is constant on S).

Proof For any bounded subdomain K of Q and ¢ > 0, let K. be the
e-neighborhood of K, that is, K. is the union of all balls B(z,¢), z € K. Let
u be extended to be zero outside © and let ue = u * p. If K. C Q for some € > 0,
then Vu, = (Vu) * p. = 0 in K. Since u. is smooth, we deduce that u. is constant
in K. On the other hand, by Lemma 1.1, u¢ — u in L}(K). Thus u is constant in
K. This completes the proof. O

Theorem 1.1 (Properties of weak derivatives) Assume 1l < p < +00.
(i) (Product rule) If f,g € WLP(Q) N L*°(R2), then fg € WHP(Q2) and

o(fg) _ of
3:1:,' o 89:,~

99

ae. i Q, 1=12,---,d;
Bz,-

g+f

(ii) (Chain rule) If f € WHP(Q) and F € C'(R),F’ € L*(R), then F(f) €
wlP(Q) and

aga(;,f) = F’(f)aa—ji ae. in Q, i=12,---4d;

(iii) If f € WYP(Q) and F is piecewise smooth on R with F' € L*(R), then
F(f) € WYP(Q). Furthermore, if L is the set of all corner points of F', we have,
fori=12,--. d,

or() _ [F(5t i f@ L,
Oz; 0, if f(z)eL.

In order to introduce further properties of Sobolev spaces, we introduce the
following condition on the boundary of the domain.
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Definition 1.3 (Lipschitz domain) We say that a domain € has a Lipschitz
boundary 6N if for each point z € 90 there exist r > 0 and a Lipschitz map-

ping ¢ : R%"! — R such that — upon rotating and relabeling the coordinate axes
if necessary — we have

QﬂQ(:E,'I‘) = {y : ‘p(ylv T 7yd—1) < yd} N Q(‘T: T)7

where Q(z,7) = {y : |yi —zi| < r,i = 1,2, ,d}(see Figure 1.1). We call Q a
Lipschitz domain if it has a Lipschitz boundary.

ST

€] o8

Figure 1.1 The domain with a Lipschitz boundary

Theorem 1.2  Let Q be a Lipschitz domain in R,

(i) Let D(2) be the set of all functions ¢la,p € C(R?). Then D(S) is dense
in WkP(Q) for all integers k > 0 and real p with 1 < p < oo;

(ii) Let u € WFP(Q) and let u denote its extension by zero outside Q. If
7€ WhP(R?), for k > 1,1 < p < oo, then u € WEP(Q);

(iii) If in addition Q) is bounded and k > 1,1 < p < oo, there erists a continuous
linear extension operator E from W*P(Q2) to W*P(R?) such that Eu = u in Q.

The following theorem plays an important role in the application of Sobolev

spaces.

Theorem 1.3 (Sobolev Imbedding Theorem) Let Q C R? be a bounded Lipschitz
domain and 1 < p < oo. Then
(i) If0 < k < d/p, the space W5P(Q) is continuously imbedded in LI(Y) with
g = dp/(d — kp) and compactly imbedded in LY Q) forany1 < ¢ < g;
(i) If k = d/p, the space W*P(Q) is compactly imbedded in LI(Q) for any
1< g <o
(iii) If 0 < m < k—d/p < m + 1, the space W*P(Q) is continuously imbedded
in C™*(Q) for a = k — d/p — m, and compactly imbedded in C™P(Q) for all
0<fB<a. '
Example 1.3 H'() is continuously imbedded in C%/2(Q) for d = 1, in LI(Q),
1< g < o0, for d=2, and in L8(Q) for d = 3.
Theorem 1.4(Poincaré-Friedrichs Inequality) Let$2 C R4 be a bounded Lipschitz
domain and 1 < p < . Then
lullzs() < CollVullzo(y,  Vu € WoP(9),
llu — ugllo) < Cpll VullLra), Yu€ WHP(9),
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1
where ug = ] Jo u(z) dz.

Proof = We only give the proof of the first inequality. Assume it is false. Then
there exists a sequence {u,} C W3'P(Q) such that

3]'—‘

”“nHLP(n) =1, ”V“'n”LP(Q)

By the compactness imbedding theorem, there exist a subsequence (still denoted
by) un and a function u € L?(f2) such that u, — u in L?(2). By the completeness
of LP(Q) we know that Vu, — 0 in LP(Q)?. .Thus, by the definition of weak
derivative, Vu = 0, which implies, by Lemma 1.2, that u = 0. This contradicts the
fact that [lullL»(q) = 1. |

Next we study the trace of functions in W*? for which we first introduce the
Sobolev spaces of non-integer order k. There are several definitions of fractional
Sobolev spaces which unfortunately are not equivalent. Here we shall use the
following one.

Definition 1.4 (Fractional Sobolev space) For two real numbers s,p with p > 1
and s = k + o where o € (0,1). We define W*P(2) when p < co as the set of all
functions u € W*P(Q) such that

/ / |aa1.l|,(l') - 6au(y)lp dz dy < 400, VIa' =k.

T — y|d+crp

Likewise, when p = oo, W*°(9) is the set of all functions u € W*>°(Q) such that

max esssup |0°u(z) — O%uy)l _

< 00, V|a| =k.
lal= km,yeﬂz;éy |w_y|a ' I |

W#P(Q) when p < oo is a Banach space with the norm

1/p

|0%u(z) — °u(y)”
[[ullweriay = ||u|kaP(Q)+|]Zk// g 4o dy

with the obvious modification when p = oo.
The closure of C§°(2) in W*P(R2) is denoted by W;?(f2). It is also a Banach
space. When p = 2, we denote H*(Q) = W*2(Q) and HZ(Q) = W3(Q).

We remark that the statement of Sobolev Imbedding Theorem (Theorem 1.3)
is valid for fractional Sobolev spaces. The density result and the extension result
in Theorem 1.2 are valid as well for fractional Sobolev spaces when s > 0.
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Now we examine the boundary values of functions in W#*?(Q2). The fractional
Sobolev space W*?(I') on the boundary I of (2 can be defined by using the atlas of
the boundary I" and using the definition of fractional Sobolev space in Definition 1.3
locally. As we are mostly interested in the case when s < 1 we make use of the
following equivalent definition of Sobolev space on the boundary.

Definition 1.5 (Sobolev space on the boundary) Let Q be a bounded Lipschitz
domain in R? with boundary I". Let s,p be two real numbers with 0 < s < 1 and
1 < p < 0o. We define W*P(I') as the set of all functions v € LP(Q) such that

/ |u(z) — u(y)?

o= gt ds(z) ds{y) < oo.

W?#P(I') is a Banach space with the norm

u u 1/p
||u||w=.p(r)={uunum+ [f 'lm(‘f P2 asoyastw)}

As usual, when p = 2, H*(I') = W*%(I

We know that if u is continuous on € then its restriction to the boundary 99 is
well-defined and continuous. If however, u is a function in some Sobolev space, the
restriction u|sq may not be defined in a pointwise sense. To interpret boundary
values of Sobolev functions properly, we introduce the following trace theorem for
Sobolev spaces.

Theorem 1.5 (Trace Theorem) Let Q be a bounded Lipschitz domain with
boundary I', 1 < p< oo, and 1/p< s < 1.
(i) There exists a bounded linear mapping

Y0:W*P(Q) onto W*~1/PP(I")

such that vo(u) = u on I' for all u € W*P(Q) N C();
(ii) For all v € C*(Q) and u € W1P(Q),

Sv Ou
= — i d N
U B dr /Q B2, /r ~Yo(u) vn;ds

where n; denotes the i-th component of the unit outward normal to I,

(ii) Wo'P(Q) = {u € WP(Q):70(u) = 0};

(iv)yo has a continuous right inverse, that is, there erists a constant C such
that, Vg € W*—1/P2(I), there exists ug € WP (Q) satisfying

Yo(ug) =g and Jluglly., ) S < Cligllwe-1s», 2 -
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Yo(u) is called the trace of u on the boundary I' = 9. Noting that o is
surjective and the property (iv) is a consequence of (i) and the open mapping
theorem. The function u, is said to be a lfting of g in W*P(Q2). In what follows,

whenever no confusion can arise, we write u instead of vo(u) on boundaries.

1.2 Variational formulation

We assume f € L?(Q2) and the coefficients in (1.2) satisfy a;;,bi,c € L®(R),i,
j=1,2---,d

Assuming for the moment the solution u is a smooth function, we multiply
Lu = f in (1.1) by a smooth function ¢ € C§°(Q), and integrate over , to find

4 ou Oy 4. Bu
i e— bi— dz = d 1.
/ﬂ ,;,jzzl%awj = +§ 15, ¢ Teup | do /Qfso z, (1.8)
where we have used the integration by parts formula in Theorem 1.5 in the first
term on the left hand side. There are no boundary terms since ¢ = 0 on 5.
By the density argument we deduce that (1.8) is valid for any ¢ € H}(Q), and
the resulting equation makes sense if u € HJ(2). We choose the space H}(Q) to
incorporate the boundary condition from (1.1) that “u = 0” on 8. This motivates
us to define the bilinear form a : H3 () x H}(Q) — R as follows

L by &, B
a(u,<p)=/n(Zaija—;a—;+;bia—;<p+cucp) dz.

ij=1
Definition 1.6 v € H}(Q) is called a weak solution of the boundary value
problem (1.1} if
a(u, ) = (f,9), V€ Hy(),
where (-, -) denotes the inner product on L%(f2).

More generally, we can consider the boundary value problem (1.1) for f €
H~1(Q), the dual space of H}(Q). For example, f is defined by

d
(f,¢):L(f0¢+Zfigj)dm, Vo € Hi (),
i=1 K

where f; € L?(Q),i = 0,1,--- ,d, and (-,-) denotes the duality pairing of H~1(f2)
and H} ().
Definition 1.7  Suppose f € H™1(Q). u € H}(Q) is called a weak solution of
(1.1) if

a(u, ©) = (f,¢), Vo€ Hy(5).



