Fred Diamond
Jerry Shurman

A First Course in
Modular Forms

BB AR B

Springer Z 0B &S )
www.wpcbj.com.cn




Fred Diamond
Jerry Shurman

A First Course
in Modular Forms

@ Springer



Fred Diamond Jerry Shurman

Department of Mathematics Department of Mathematics

Brandeis University Reed College

Waltham, MA 02454 Portland, OR 97202

USA USA

fdiamond @brandeis.edu jerry@reed.edu

Editorial Board

S. Axler F.W. Gehring K.A. Ribet

Mathematics Department Mathematics Department Mathematics Department

San Francisco State East Hall University of California,
University University of Michigan Berkeley

San Francisco, CA 94132 Ann Arbor, MI 48109 Berkeley, CA 94720-3840

USA USA USA

axler@sfsu.edu fgehring @math.lsa.umich.edu  ribet@math.berkeley.edu

Mathematics Subject Classification (2000): 25001, 11019

Library of Congress Cataloging-in-Publication Data
Diamond, Fred.

A first course in modular forms / Fred Diamond and Jerry Shurman.

p. cm.— (Graduate texts in mathematics ; 228)
Includes bibliographical references and index.
ISBN 0-387-23229-X

1. Forms, Modular. 1. Shurman, Jerry Michael. II. Title. Il Series.
QA243.D47 2005
512.7'3—-dc22 2004058971

ISBN 0-387-23229-X

© 2005 Springer Science+Business Media, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New
York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis.
Use in connection with any form of information storage and retrieval, electronic adaptation, com-
puter software, or by similar or dissimilar methodology now known or hereafter developed is for-

bidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not

they are subject to proprietary rights.

This reprint has been authorized by Springer-Verlag (Berlin/Heidelberg/New York) for sale in

the People’s Republic of China only and not for export therefrom.

springer.com



BREM&RE (C1P) iR

BRAEMEE: 3’3/ (3D KPME (F. Diamond) ,
(X) W/RE (Shurman,J.) 3. —dbm: HFEFHK
AEIERAR, 2007.5

(BER AL 3
FH4 B :A first Course in Modular Forms

ISBN 978-7-5062-8300-7

I A& 11 Of--@if IL BER—HRE—8H—
33 V. 0156

R [E R A B P IECIPE IR % F (20075 0587908

H  &: AFirst Course in Modular Forms
f£  #: F.Diamond, J. Shurman

i & ERGUERER

REMIB: &/

AR & HRAEBHEARERA

ED B #: JerttEEpR)T

# T HHFEBHEARRRAT GLE#ERAE 1379 100010)
BEREIE: 010-64015659, 64038348

BF{EH: kjsk @ vip.sina.com

FOEK:. 24

Bl 3. 19

R s 200745 A48 1 IkEpR)
IR EE: 01-2007-1489

1 2: 978-7-5062-8300-7/ O + 604 T #4900 ¢

57 BB H A AL R 2 7 B 343 Springer i# N EPE A MR EEN LT



Preface

This book explains a result called the Modularity Theorem:
All rational elliptic curves arise from modular forms.

Taniyama first suggested in the 1950’s that a statement along these lines might
be true, and a precise conjecture was formulated by Shimura. A paper of Weil
[Wei67] provided strong theoretical evidence for the conjecture. The theorem
was proved for a large class of elliptic curves by Wiles [Wil95] with a key
ingredient supplied by joint work with Taylor [TW95], completing the proof
of Fermat’s Last Theorem after some 350 years. The Modularity Theorem
was proved completely by Breuil, Conrad, Taylor, and the first author of this
book [BCDTO1]. Different forms of it are stated here in Chapters 2, 6, 7, 8,
and 9.

To describe the theorem very simply for now, first consider a situation
from elementary number theory. Take a quadratic equation

Q::Ez:d’ dEZ,d#O,

and for each prime number p define an integer a,(Q),

ap(Q) = (

the number of solutions z of equation Q 1
working modulo p

The values a,(Q) extend multiplicatively to values a,(Q) for all positive in-
tegers n, meaning that amn(Q) = am(Q)a,(Q) for all m and n.

Since by definition a,(Q) is the Legendre symbol (d/p) for all p > 2, one
statement of the Quadratic Reciprocity Theorem is that a,(Q) depends only
on the value of p modulo 4|d|. This can be reinterpreted as a statement that
the sequence of solution-counts {a2(Q), a3(Q), as(Q),...} arises as a system
of eigenvalues on a finite-dimensional complex vector space associated to the
equation Q. Let N = 4|d|, let G = (Z/NZ)* be the multiplicative group of
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integer residue classes modulo N, and let Vv be the vector space of complex-

valued functions on G,
VWw={f:G— C}.

For each prime p define a linear operator 7, on Vy,

ifp{N,

Tp H VN — VN, (Tpf)(n) {f(pn) ifp l N

where the product pn € G uses the reduction of p modulo N. Consider a
particular function f = fg in Vy,

f:G—C, f(n) =an(Q) forn € G.

This is well defined by Quadratic Reéiprocity as stated above. It is immediate
that f is an eigenvector for the operators T},

(T, 1) () = {g@“) = o (Q) = 4,(Q)2n (@) ;;m

=a,(Q)f(n) in all cases.

That is, T, f = ap(Q)f for all p. This shows that the sequence {a,(Q)} is a
system of exgenvalues as claimed.

The Modularity Theorem can be viewed as giving an ana.logous result.
Consider a cubic equation

E:y*=42°-gox—g3, g1,03€Z, g3 — 2793 #0.
Such equations define elliptic curves, objects central to this book. For each
prime number p define a number a,(E) akin to a,(Q) from before,

the number of solutions (r,y) of equation E
ap(E) =p— .

working modulo p

One statement of Modularity is that again the sequence of solution-counts
{ap(E)} arises as a system of eigenvalues. Understanding this requires some
vocabulary.

A modular form is a function on the complex upper half plane that sat-
isfies certain transformation conditions and holomorphy conditions. Let 7 be
a variable in the upper half plane. Then a modular form necessarily has a
Fourier expansion,

f(r)= ian(f)ez"i"", an(f) € C for all n.

n=0

Each nonzero modular form has two associated integers k and N called its
weight and its level. The modular forms of any given weight and level form
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a vector space. Linear operators called the Hecke operators, including an op-
erator T, for each prime p, act on these vector spaces. An eigenform is a
modular form that is a simultaneous eigenvector for all the Hecke operators.
By analogy to the situation from elementary number theory, the Modular-
ity Theorem associates to the equation F an eigenform f = fg in a vector
space Vy of weight 2 modular forms at a level N called the conductor of E.
The eigenvalues of f are its Fourier coeflicients,

To(f) = ap(f)f for all primes p,

and a version of Modularity is that the Fourier coefficients give the solution-
counts,
ap(f) = ap(E) for all primes p. (0.1)

That is, the solution-counts of equation E are a system of eigenvalues, like the
solution-counts of equation @7, but this time they arise from modular forms.
This version of the Modularity Theorem will be stated in Chapter 8.

Chapter 1 gives the basic definitions and some first examples of modular
forms. It introduces elliptic curves in the context of the complex numbers,
where they are defined as tori and then related to equations like E but with
g2,93 € C. And it introduces modular curves, quotients of the upper half
plane that are in some sense more natural domains of modular forms than the
upper half plane itself. Complex elliptic curves are compact Riemann surfaces,
meaning they are indistinguishable in the small from the complex plane. Chap-
ter 2 shows that modular curves can be made into compact Riemann surfaces
as well. It ends with the book’s first statement of the Modularity Theorem,
relating elliptic curves and modular curves as Riemann surfaces: If the com-
plex number j = 172843 /(g5 — 27g3) is rational then the elliptic curve is the
holomorphic image of a modular curve. This is notated

XO(N) — E.

Much of what follows over the next six chapters is carried out with an eye
to going from this complex analytic version of Modularity to the arithmetic
version (0.1). Thus this book’s aim is not to prove Modularity but to state its
different versions, showing some of the relations among them and how they
connect to different areas of mathematics.

Modular forms make up finite-dimensional vector spaces. To compute their
dimensions Chapter 3 further studies modular curves as Riemann surfaces.
Two complementary types of modular forms are Fisenstein series and cusp
forms. Chapter 4 discusses Eisenstein series and computes their Fourier ex-
pansions. In the process it introduces ideas that will be used later in the book,
especially the idea of an L-function, '

o0
Lis)=% 2=,

ns
n=1
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Here s is a complex variable restricted to some right half plane to make the
series converge, and the coefficients a, can arise from different contexts. For
instance, they can be the Fourier coefficients a,(f) of a modular form. Chap-
ter 5 shows that if f is a Hecke eigenform of weight 2 and level N then its
L-function has an Fuler factorizetion

L(s, f) =]](1 — ap(Hp™* + 1n(p)p* %)%,
pr

The product is taken over primes p, and 1x(p) is 1 when p{ N (true for all
but finitely many p) but is 0 when p | N.

Chapter 6 introduces the Jacobian of a modular curve, analogous to a
complex elliptic curve in that both are complex tori and thus have Abelian
group structure. Another version of the Modularity Theorem says that every
complex elliptic curve with a rational j-value is the holomorphic homomorphic
image of a Jacobian,

Jo (N ) — E.

Modularity refines to say that the elliptic curve is in fact the image of a
quotient of a Jacobian, the Abelian variety associated to a weight 2 eigenform,

Af—éE.

This version of Modularity associates a cusp form f to the elliptic curve E.

Chapter 7 brings algebraic geometry into the picture and moves toward
number theory by shifting the environment from the complex numbers to the
rational numbers. Every complex elliptic curve with rational j-invariant can
be associated to the solution set of an equation £ with g3, g3 € Q. Modular
curves, Jacobians, and Abelian varieties are similarly associated to solution
sets of systems of polynomial equations over Q, algebraic objects in contrast
to the earlier complex analytic ones. The formulations of Modularity already
in play rephrase algebraically to statements about objects and maps defined
by polynomials over Q,

XO(N)alg — E, -]O(N)alg — E, A_f,alg —3 E.

We discuss only the first of these in detail since Xo(N)a1; is a curve while
Jo(N)aig and Ay a1 are higher-dimensional objects beyond the scope of this
book. These algebraic versions of Modularity have applications to number
theory, for example constructing rational points on elliptic curves using points
called Heegner points on modular curves.

Chapter 8 develops the Fichler-Shimura relation, describing the Hecke
operator T), in characteristic p. This relation and the versions of Modularity
already stated help to establish two more versions of the Modularity Theorem.
One is the arithmetic version that a,(f) = ap(E) for all p, as above. For the
other, define the Hasse- Weil L-function of an elliptic curve E in terms of the
solution-counts a,(E) and a positive integer N called the conductor of E,
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L(s, B) = [ (1 — ap(E)p~* + 1n(p)p* %)%
D

Comparing this to the Euler product form of L(s, f) above gives a version of
Modularity equivalent to the arithmetic one: The L-function of the modular
form is the L-function of the elliptic curve, ‘

L(s,f)=L(s,E).

As a function of the complex variable s, both L-functions are initially defined
only on a right half plane, but Chapter 5 shows that L(s, f) extends ana-
lytically to all of C. By Modularity the same now holds for L(s, E). This is
important because we want to understand E as an Abelian group, and the
conjecture of Birch and Swinnerton-Dyer is that the analytically continued
L(s, E) contains information about the group’s structure.

Chapter 9 introduces £-adic Galois representations, certain homomor-
phisms of Galois groups into matrix groups. Such representations are asso-
ciated to elliptic curves and to modular forms, incorporating the ideas from
Chapters 6 through 8 into a framework with rich additional algebraic struc-
ture. The corresponding version of the Modularity Theorem is: Every Galois
representation associated to an elliptic curve over Q arises from a Galois
representation associated to a modular form,

Pfe~ PE:.

This is the version of Modularity that was proved. The book ends by discussing
two broader conjectures that Galois representations arise from modular forms.

Many good books on modular forms already exist, but they can be daunt-
ing for a beginner. Although some of the difficulty lies in the material itself,
the authors believe that a more expansive narrative with exercises will help
students into the subject. We also believe that algebraic aspects of modu-
lar forms, necessary to understand their role in number theory, can be made
accessible to students without previous background in algebraic number the-
ory and algebraic geometry. In the last four chapters we have tried to do so
by introducing elements of these subjects as necessary but not letting them
take over the text. We gratefully acknowledge our debt to the other books,
especially to Shimura [Shi73].

The minimal prerequisites are undergraduate semester courses in linear al-
gebra, modern algebra, real analysis, complex analysis, and elementary num-
ber theory. Topics such as holomorphic and meromorphic functions, congru-
ences, Euler’s totient function, the Chinese Remainder Theorem, basics of
general point set topology, and the structure theorem for modules over a
principal ideal domain are used freely from the beginning, and the Spectral
Theorem of linear algebra is cited in Chapter 5. A few facts about represen-
tations and tensor products are also cited in Chapter 5, and Galois theory is
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used extensively in the later chapters. Chapter 3 quotes formulas from Rie-
mann surface theory, and later in the book Chapters 6 through 9 cite steadily
more results from Riemann surface theory, algebraic geometry, and algebraic
number theory. Seeing these presented in context should help the reader ab-
sorb the new language necessary en route to the arithmetic and representation
theoretic versions of Modularity.

We thank our colleagues Joe Buhler, David Cox, Paul Garrett, Cris Poor,
Richard Taylor, and David Yuen, Reed College students Asher Auel, Rachel
Epstein, Harold Gabel, Michael Lieberman, Peter McMahan, and John Saller,
and Brandeis University student Makis Dousmanis for looking at drafts. Com-
ments and corrections should be sent to the second author at jerry@reed. edu.

July 2004 : Fred Diamond
Brandeis University
Waltham, MA

Jerry Shurman
Reed College
Portland, OR



Contents

Preface ... vii
1 Modular Forms, Elliptic Curves, and Modular Curves ..... 1
1.1 First definitions and examples. ............. ..o, 1
1.2 Congruence SUDEIOUDPS .. .vvvivvnrrvervrareeinsnnnennians 11
1.3 Complex torl ... . .ivtiiii it ittt 24
1.4 Complex tori as ellipticcurves ..........oviiiviiii e, 31
1.5 Modular curves and moduli spaces........... ... oiiin... 37
2 Modular Curves as Riemann Surfaces ..................... 45
2.1 TopOlOgY .ottt e e 45
b2 O 1T o - T A 48
2.3 Ellptic points. .. .cvivir it iie it caiieinannenans 52
24 CUSPS .. vnrieiieiieearnnnn, e e e 57
2.5 Modular curves and Modularity ..........ccovveiiiiien .. 63
3 DimensionFormulas .............. ... . ciiiiiiiiiiiinn... 65
3.1 The genus . ... ov ittt i i i e e e 65
3.2 Automorphic forms ..........oiiiiiiiiiiiii e 71
3.3 Meromorphic differentials.............ccoiiiiiii i i 7
3.4 Divisors and the Riemann-Roch Theorem .................. 83
3.5 Dimension formulasforeven k ...........ccoiiiiiiinn.n. 85
3.6 Dimension formulasforodd k......... ... it 89
3.7 Moreonellipticpoints ....... ... i 92
3.8 MOIre ONl CUSPS oo vvutvntvnriennsnnroosneransasssesassnas 98
3.9 Moredimensionformulas ................... .. ... ..., 106
4 Eisenstein Series...........ccoi ittt i 109
4.1 Eisenstein series for SLa(Z) .........coviiiiiiiiin s, 109
4.2 Eisenstein series for '(N) when £ >3.......ccoivniinnin. . 111

4.3 Dirichlet characters, Gauss sums, and eigenspaces ........... 116



Xiv

Contents
4.4 QGamma, zeta, and L-functions ............... ... ... .l 120
4.5 Eisenstein series for the eigenspaceswhen k>3 ............. 126
4.6 Eisenstein seriesof weight 2. ......... ... il 130
4.7 Bernoulli numbers and the Hurwitz zeta function............ 133
4.8 Fisenstein seriesof weight 1................... . ovvee.. .. 138
4.9 'The Fourier transform and the Mellin transform ............. 143
4.10 Nonholomorphic Eisenstein series.......ccvvvvvniiriiainn. 147
4.11 Modular forms via theta functions ................... ... ... 155
Hecke Operators. ......oviivnieiirtiienniiireinenaennrans 163
5.1 The double coset operator ..........coviiiii i, 163
5.2 The (d) and T, OPerators ..........oeuuiveueirarinennanan. 168
5.3 The (n) and Ty, Operators ............c.veevirueeennnnnn.. 178
5.4 The Peterssoninner product .............ccoiiviiia... 181
5.5 Adjoints of the Hecke Operators..............c.ooovnt. 183
568 Oldforms and Newforms. .........cviiiiuineiinnnnnennnnn 187
57 TheMain Lemma ... ..oviniiriiiniiiinreniinnasionsenses 189
5.8 Eigenforms .....covnuiiriiiii i e 195
5.9 The connection with L-functions .......................... 200
5.10 Functional equations .. .......coiiitieeiinninennnnennnnn. 204
5.11 Eisenstein series again ........ ... .ot 205
Jacobians and Abelian Varieties ................... ..ot 211
6.1 Integration, homology, the Jacobian, and Modularity......... 212
6.2 Maps between Jacobians .......vi il it i i 217
6.3 Modular Jacobians and Hecke operators .................... 226
6.4 Algebraic numbers and algebraic integers........... s 230
6.5 Algebraic eigenvalues ...... £ 233
6.6 Eigenforms, Abelian varieties, and Modularity .............. 240
Modular Curves as Algebraic Curves ...................... 249
7.1 Elliptic curves as algebraiccurves ............... ... .. ..., 250
7.2 Algebraic curves and their function fields ................... 257
7.3 Divisorsoncurves .................. e 268
7.4 The Weil pairing algebraically.....................oviis 275
7.5 Functionfieldsover C....... ... oot 279
7.6 Function fleldsover Q........vcvriiiiinr e iinnrennnnsnn. 287
7.7 Modular curves as algebraic curves and Modularity .......... 290
7.8 Isogenies algebraically. ...l 295
7.9 Hecke operators algebraically ............... ... ..o oot 300
The Eichler—Shimura Relation and L-functions ............ 309
8.1 Elliptic curves in arbitrary characteristic ................... 310
8.2 Algebraic curves in arbitrary characteristic ................. 317

8.3 Elliptic curves over Q and their reductions ................. 322



Contents xV

8.4 Elliptic curves over Q and their reductions ................. 329

8.5 Reduction of algebraic curvesand maps .................... 336

8.6 Modular curves in characteristic p: Igusa’s Theorem ......... 347

8.7 The Eichler-Shimura Relation .............coiiviaviinen. 349

8.8 Fourier coefficients, L-functions, and Modularity............. 356

9 Galois Representations .............. ... . 0o it 365
9.1 Galoisnumberfields ......... ... .. .. L it 366

9.2 The {¢-adic integers and the f-adic numbers ................. 372

9.3 Galois representations........... ... . . i i i i, 376

9.4 Galois representations and ellipticcurves ................... 382

9.5 Galois representations and modular forms .................. 386

9.6 Galois representations and Modularity ..................... 391

- Hints and Answers to the Exercises..................oovvvnnt. 401
List of Symbols .. ...t i e e 421
Index .. ... e e e e e e 427



1

Modular Forms, Elhptlc Curves, and Modular
Curves

This chapter introduces three central objects of the book.

Modular forms are functions on the complex upper half plane. A matrix
group called the modular group acts on the upper half plane, and modular
forms are the functions that transform in a nearly invariant way under the
action and satisfy a holomorphy condition. Restricting the action to subgroups
of the modular group called congruence subgroups gives rise to more modular
forms.

A complezx elliptic curve is a quotient of the complex plane by a lattice.
As such it is an Abelian group, a compact Riemann surface, a torus, and—
nonobviously—in bijective correspondence with the set of ordered pairs of
complex numbers satisfying a cubic equation of the form E in the preface.

A modular curve is a quotient of the upper half plane by the action of a
congruence subgroup. That is, two points are considered the same if the group
takes one to the other.

These three kinds of object are closely related. Modular curves are mapped
to by moduli spaces, equivalence classes of complex elliptic curves enhanced
by associated torsion data. Thus the points of modular curves represent en-
hanced elliptic curves. Consequently, functions on the moduli spaces satisfying
a homogeneity condition are essentially the same thing as modular forms.

Related reading: Gunning [Gun62], Koblitz [Kob93], Schoeneberg [Sch74],
and Chapter 7 of Serre [Ser73] are standard first texts on this subject. For
modern expositions of classical modular forms in action see [Cox84] (reprinted
in [BBBO0O]) and [Cox97].

1.1 First definitions and examples
The modular group is the group of 2-by-2 matrices with integer entries and

determinant 1,

SLy(Z) = {[:3] : a,b,¢c,d € Z,ad — bc = 1}.
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The modular group is generated by the two matrices

o] = [273)

(Exercise 1.1.1). Each element of the modular group is also viewed as an
automorphism (invertible self-map) of the Riemann sphere C = CU {oc}, the
fractional linear transformation

ab ar+b ~
[cd](T)_—m--i—d’ Te€C.

This is understood to mean that if ¢ # 0 then —d/c maps to co and oo
maps to a/c, and if ¢ = 0 then oo maps to co. The identity matrix I and
its negative —I both give the identity transformation, and more generally
each pair +v of matrices in SLy(Z) gives a single transformation. The group
of transformations defined by the modular group is generated by the maps
described by the two matrix generators,

7—7+1 and 7~ —1/7.

The upper half plane is
H = {r € C:Im(7) > 0}.

Readers with some background in Riemann surface theory—which is not nec-
essary to read this book—may recognize H as one of the three simply con-
nected Riemann surfaces, the other two being the plane C and the sphere C.
The formula

Im(T)
a7 4] €@

(Exercise 1.1.2(a)) shows that if -y € SL3(Z) and 7 € H then also (1) € H,
i.e., the modular group maps the upper half plane back to itself. In fact the
modular group acts on the upper half plane, meaning that I(r) = 7 where
I is the identity matrix (as was already noted) and (vy')(r) = v(v(7)) for
all 7,4 € SLy(Z) and 7 € H. This last formula is easy to check (Exer-
cise 1.1.2(b)).

m(y(r)) =

Definition 1.1.1. Let k be an integer. A memmorphzc function f : H — C
is weakly modular of weight k if

£0r) = e+ 1(r) fory = |25] €81a(2) and e .

Section 1.2 will show that if this transformation law holds when v is each
of the generators [§1] and [? 73] then it holds for all ¥ € SLy(Z). In other
words, f is weakly modular of weight k if
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f(r+1)=f(r) end f(-1/7)=7"f(r).

Weak modularity of weight 0 is simply SLz(Z)-invariance, f oy = f for
all v € SL2(Z). Weak modularity of weight 2 is also natural: complex analy-
sis relies on path integrals of differentials f(7)dr, and SLy(Z)-invariant path
integration on the upper half plane requires such differentials to be invariant
when 7 is replaced by any (7). But (Exercise 1.1.2(c))

dv(r) = (et + d)~%dr,
and so the relation f(v(7))d(y(7)) = f(r)dr is

F(x(r) = (et + d)*f(7),

giving Definition 1.1.1 with weight k¥ = 2. Weight 2 will play an especially
important role later in this book since it is the weight of the modular form in
the Modularity Theorem. The weight 2 case also leads inexorably to higher
even weights—multiplying two weakly modular functions of weight 2 gives a
weakly modular function of weight 4, and so on. Letting v+ = —I in Defini-
tion 1.1.1 gives f = (—1)*f, showing that the only weakly modular function
of any odd weight k is the zero function, but nonzero odd weight examples
exist in more general contexts to be developed soon. Another motivating idea
for weak modularity is that while it does not make a function f fully SLa(Z)-
invariant, at least f(7) and f(7(7)) always have the same zeros and poles
since the factor ¢r + d on H has neither.

Modular forms are weakly modular functions that are also holomorphic on
the upper half plane and holomorphic at co. To define this last notion, recall
that SLy(Z) contains the translation matrix

11
[01] T T+,

for which the factor er + d is simply 1, so that f(= + 1) = f(r) for every

weakly modular function f : H — C. That is, weakly modular functions are

Z-periodic. Let D = {q € C : |q|] < 1} be the open complex unit disk, let

D’ = D — {0}, and recall from complex analysis that the Z-periodic holomor-

phic map 7 — e>™" = ¢ takes # to D’. Thus, corresponding to f, the function

g : D' — C where g(q) = f(log(q)/(271)) is well defined even though the

logarithm is only determined up to 27iZ, and f(7) = g(e*"*"). If f is holo-

morphic on the upper half plane then the composition g is holomorphic on,
the punctured disk since the logarithm can be defined holomorphically about;
each point, and so g has a Laurent expansion g(g) = }_, ..z @.q" for g€ D’
The relation |g| = e=2"1™(7) shows that ¢ — 0 as Im(7) — co. So, thinking

of oo as lying far in the imaginary direction, define f to be holomorphic at co

if g extends holomorphically to the puncture point ¢ = 0, i.e., the Laurent

series sums over n € N. This means that f has a Fourier ezpansion
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f(M) =) aa(f)g", q=e*,

n=0

Since g — 0 if and only if Im(7) — oo, showing that a weakly modular holo-
morphic function f : # — C is holomorphic at co doesn’t require computing
its Fourier expansion, only showing that limyyn ()00 () exists or even just
that f(7) is bounded as Im(t) — 0.

Definition 1.1.2. Let k be an integer. A function f : H — C is a modular
form of weight k if

(1) f is holomorphic on M,
(2) f is weakly modular of weight k,
(3) f is holomorphic at co.

The set of modular forms of weight k is denoted M (SLa(Z)).

It is easy to check that My (SL2(Z)) forms a vector space over C (Exer-
cise 1.1.3(a)). Holomorphy at oo will make the dimension of this space, and
of more spaces of modular forms to be defined in the next section, finite. We
will compute many dimension formulas in Chapter 3. When f is holomorphic
at oo it is tempting to define f(oo) = g(0) = ap, but the next section will
show that this doesn’t work in a more general context.

The product of a modular form of weight k& with a modular form of weight
is a modular form of weight k 4 | (Exercise 1.1.3(b)). Thus the sum

M(SL2(2)) = €D Mi(SLx(Z))

kez
forms a ring, a so-called graded ring because of its structure as a sum.

The zero function on H is a modular form of every weight, and every
constant function on % is a modular form of weight 0. For nontrivial examples
of modular forms, let k¥ > 2 be an even integer and define the Fisenstein
series of weight k to be a 2-dimensional analog of the Riemann zeta function

C(k) = Z;:-I l/dk’

. r 1
Gu()=Y——, reH,
oo (e + d)

where the primed summation sign means {0 sum over nonzero integer pairs
(c,d) € Z2 — {(0,0)}. The sum is absolutely convergent and converges uni-
formly on compact subsets of X (Exercise 1.1.4(c)), so Gy is holomorphic
on # and its terms may be rearranged. For any y = (28] € SLa(Z), compute
that



