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Introduction

The purpose of this book is to lay down the foundations for the abstract theory of
C*-smoothness in infinite-dimensional real Banach spaces, and investigate its intimate
connections with the structural properties of the underlying spaces.

The main objects of the theory are polynomials and C k_smooth (including real
analytic) mappings. In some sense, the most important result concerning C¥-smooth
mappings is the Taylor formula, which takes the familiar form known from the theory
of functions on R”. This formula unveils the prominent role played by polynomials in
smoothness (especially higher smoothness) questions by way of approximating smooth
functions in the neighbourhood of a point. In the infinite-dimensional setting this role
is brought even further, as polynomials also provide the vital link with the structure of
the underlying Banach space.

This explains why polynomials have received a great deal of attention in the present
book. We have included plenty of results concerning polynomials with the intention
to build up a supply of results and points of view that could be useful for the future
development of the theory. The material is mostly organised according to the methods
used. We study polynomials on R” in connection with isometric theory of finite-
dimensional spaces. It turns out that homogeneous polynomials are closely related to
isometric subspaces of £, for p even. The theory of Chebyshev polynomials is used
to obtain optimal estimates on the size of higher derivatives for a given polynomial.
The theory of tensor products and (p, ¢)-summing operators is applied to obtain sharp
estimates on the values of polynomial coefficients for polynomials from cg to £,. The
concept of finite representability combined with powerful finite-dimensional results
concerning type and cotype of Banach spaces, spreading models, and ultrapowers lead
to strong structural results for Banach spaces admitting separating polynomials. All
the above results and much more are covered in the first four chapters. The breadth
of the above mentioned material precludes making our presentation completely self
contained.

We decided, for the benefit of the reader, to include most of the needed auxiliary
results (without proof) in the form of short survey paragraphs, or sometimes whole
sections, which form an integral part of the text. This makes it possible for the reader
to follow the text, without having to jump into an appendix or a specialised monograph,
and keep track of the flow of ideas.

The remaining three chapters of the book are devoted to a detailed study of smooth
mappings between Banach spaces. The properties being studied can be roughly divided
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into three main areas whose polynomial (and usually finite-dimensional) counterparts
are covered in the first half of the book.

The first aspect are the structural properties implied by the existence of certain poly-
nomials, resp. separating C k _smooth functions (in the finite-dimensional setting this
corresponds to the study of subspaces of E;’,). The second aspect is the supply of such
mappings (this corresponds essentially to quantitative estimates on the coefficients),
and finally the last aspect concerns approximation questions (this relates to the theory
of algebras of sub-symmetric polynomials).

The Banach space ¢q plays a major role throughout the subject. From the technical
point of view, this is due to the fact that its supply of polynomials (and uniformly
smooth functions) is very small (they are weakly uniformly continuous), but on the other
hand its supply of C°-smooth functions is very large (thanks to the phenomenon of
functions that depend locally on finitely many coordinates). Moreover, it is a universal
space for C k_smooth embeddings. There are two important classes of spaces which
share some of its important features. It is the class of polyhedral spaces, which are
C*°-smooth, c¢ saturated, and behave well with respect to taking subspaces. From
the other side it is the class W, which contains all £-spaces and behaves rather
well with respect to uniformly smooth mappings and quotients. The intersection of
these two classes contains all isometric preduals of €1, in particular all C(K) spaces,
K countable compact. The examples of £4,-spaces of Jean Bourgain and Freddy
Delbaen do not contain c¢g, so they are not polyhedral. On the other hand, Schreier’s
space is a polyhedral space (isomorphic to a subspaces of C ([0, ®@®])) which admits a
non-compact linear operator into £, and hence it does not belong to class 'W. In fact,
Ioannis Gasparis constructed polyhedral spaces with quotient €.

The existence of a separating C k__smooth function on a Banach space has strong
structural consequences. For example a Banach space admitting a C2-smooth bump
either contains cg or it is super-reflexive. So the study of higher smoothness naturally
splits into two rather distinct extreme situations, which also rely on distinct techniques.
This feature is repeated with respect to smooth mappings, whose supply again depends
heavily on the geometry of the underlying space. The former case corresponds to
‘W-spaces, which admit only few uniformly smooth mappings. More precisely, if
Y** has no subspace isomorphic to ¢, then any uniformly smooth mappings from a
‘W-space into Y is weakly compact. On the other hand, super-refiexive spaces admit
surjective polynomials onto any separable Banach space.

In the questions on approximability of functions and mappings the space cg plays a
fundamental role thanks to being a universal C k _smooth embedding space. However,
for real analytic approximations the available methods again seem to distinguish
between spaces with a separating polynomial or merely a separating analytic function
(the co-type). At present it is not clear if this distinction can be overcome by improving
the methods of proof.

Our book is focusing on the case of real Banach spaces, using the complex case only
as a tool for dealing with analytic functions. We feel that the theory has now reached a
certain level of maturity, in the sense that extreme cases of higher smoothness, i.e. the
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co-like, or finite rank phenomena, and on the other hand the separating polynomial-like
phenomena have been well-understood. Our rendering of the state of the theory is
rather complete and up to date, and it appears for the first time in a book form. A
large part is devoted to very recent developments, sometimes in an outline form. We
believe that our book may serve as a rather complete reference book for the results and
techniques in the area of smoothness in separable real Banach spaces. It can also be
used as a textbook by advanced graduate students and active researchers with solid
background in Banach space theory, and for this purpose we pose a number of open
problems for independent research. The future now lies in investigation of general
polynomials, and higher order approximations. This will most probably require a new
set of techniques.

Let us proceed with a more detailed description of some highlighted results in the
respective chapters. The first chapter contains an abstract theory of C k_smoothness
in any Banach space. We introduce multilinear mappings and polynomials, as higher
derivatives are defined to be these objects. The main result in this respect is the Taylor
formula which provides a fundamental link between smoothness, polynomials, and the
underlying Banach space structure. We also need to introduce the complexification
of spaces and polynomials. This is indispensable for the development of the theory
of analytic functions, but also very convenient in other situations thanks to efficient
averaging methods for complex polynomials. Our treatment of (real) analytic func-
tions was inspired by papers of Jacek Bochnak and Jézef Siciak. Analytic functions
are defined as functions locally admitting power series expansion. There are several
important characterisations, in particular by using finite-dimensional restrictions, and
by using the complexified series. These characterisations are also an important tool
in developing the theory. The theory depends heavily on results from one or several
complex variables, which are mentioned without proof and applied through the notion
of higher Gateaux smoothness.

In brief summary, the first chapter gives a complete and self contained introduction
to the subject, including the case of real analytic functions which to the best of our
knowledge is for the first time in a book form. The remaining six chapters are best read
consecutively. Chapters 2—4, which focus on properties of polynomials, cover all the
necessary background needed for the remaining Chapters 5-7, which are dealing with
general smooth mappings. Most of the material contained therein is also new to book
form.

In Chapter 2 we focus on the duality theory for spaces of polynomials on finite-
dimensional Banach spaces, in particular the cubature formulae representing positive
functionals. We present a very simple and original proof of the well-known Chakalov
theorem. We outline the proofs of cubature formulae related to Chebyshev polynomials
on R and R?. This topic seems to be rather special but it leads to the proof of the
Skalyga-Markov-type inequality, an optimal estimate on the size of higher derivatives
of real polynomials. We continue by showing that every homogeneous polynomial is a
finite sum of powers of functionals, which leads to the theory of isometric embeddings
of finite-dimensional spaces into £,-spaces where p is even. We present, without proof,
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the recent result of Vladimir Leonidovich Dol’nikov and Roman Nikolaevich Karasev,
and its close (but easier) relative, the Birch theorem. According to these results, a
k-homogeneous polynomial on R¥ can be restricted to a suitable 7( N, k )-dimensional
subspace E so that this restriction is equivalent to a power of the Euclidean norm
on E. We cover the basic theory of identities for polynomials, which implies that a
continuous function is a polynomial of degree at most n provided that its restriction
to every affine one-dimensional subspace is also a polynomial of degree at most 7.
The last section is devoted to a relatively simple but powerful averaging method for
treating polynomials and multilinear mappings, which leads to important estimates
of polynomial coefficients. More sophisticated methods which combine probabilistic
averaging with other techniques are treated in the subsequent chapter.

Chapter 3 is devoted to the study of polynomials between Banach spaces and the
way they act on sequences from the initial space. This is a classical theme in the
theory of linear operators, represented by the Dunford-Pettis property and the theory of
p-summing operators. We start the chapter by outlining the basics on tensor products
as well as symmetric tensor products and their duality with polynomial spaces. We
then outline the concepts of uniform spaces and uniform continuity which play a
key role throughout the whole book. We proceed by developing in detail the basic
theory of weakly, weakly sequentially, and weakly uniformly continuous mappings
and in particular polynomials. This investigation was initiated in the early papers of
Aleksander Petczyriski and more systematically developed by Richard Martin Aron and
his coauthors. An important contribution of Raymond A. Ryan was the introduction
of symmetric tensor products into the subject, as well as the proof that every weakly
compact polynomial from a space with the Dunford-Pettis property maps weakly
Cauchy sequences to norm convergent ones.

In Banach spaces not containing £; the weak sequential continuity on bounded
sets coincides with full (or even uniform) continuity. This important fact results from
Rosenthal’s £; theorem and other related results of Edward Wilfred Odell and results
of Jean Bourgain, David H. Fremlin, and Michel Talagrand.

We introduce the language of the theory of (p, g)-summing operators, mention some
connections with tensor products, and formulate some of the fundamental results of the
theory, introducing also the notions of type and cotype. Using the theory of multiple
(p: 1)-summing operators, we give optimal estimates on the coefficients of polynomials
in P ("co; {p), following the recent work of Andreas Defant and Pablo Sevilla-Peris.

In Chapter 4 we apply the concept of finite representability to the study of asymptotic
behaviour of polynomials and the linear structure of the underlying Banach spaces.
We describe the ultrapower construction for a Banach space X, which leads to a
much larger Banach space (X ) that is finitely representable in X and that is well-
suited for constructions of uniformly continuous mappings. As an application we
show that uniformly smooth mappings can be extended into the bidual. By using the
spreading models of X, which capture the asymptotic behaviour of infinite sequences
in X, we study the upper and lower estimates of sequences, the Banach-Saks and
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the weak p-Banach-Saks properties. We proceed by showing that if X has a sub-
symmetric basis and a separating 4-homogeneous polynomial, then it is isomorphic
to some £, for p even, and d = kp, k € N. As a corollary we obtain a fundamental
result of Robert Deville stating that every Banach space with a separating polynomial
contains a subspace isomorphic to £,, p even. We study in detail the restrictions of
polynomials on £, to subspaces generated by suitable subsequences of the canonical
basis. The main result in this direction, which goes well beyond the asymptotic but
finite-dimensional results based on spreading models, claims that these restrictions are
almost sub-symmetric. As a corollary to all these results we show that for an arbitrary
polynomial P on X there is an infinite-dimensional subspace Y of X such that the
restriction of P to Y is either separating or asymptotically zero in a strong sense.

The last sections are devoted to the study of algebras A, (X) of polynomials gener-
ated by polynomials of degree at most # on a Banach space X . The main technical tool
is a finite-dimensional lemma which claims that the symmetric polynomial s,{v (x) =

Z}L] x]’.’ on R¥ is not in the uniform closure of a suitably defined sub-symmetric sub-

algebra of A, _; (RM), provided that N is large enough. We proceed by applying this
result to infinite-dimensional spaces using spreading model techniques. The main result
implies in particular that A1 ({p) = -+ = Ap—1(€p) S An({p) G An+1(€p) S -+,
where n = [p].

Chapter 5 is devoted to the detailed study of Banach spaces admitting smooth
separating functions. An important set of tools for obtaining structural results are the
variational principles. When applied to a given lower continuous and bounded below
function f, they guarantee the existence of a point x € X and a smooth function g
such that f — g attains its minimum, sometimes in a strong sense. If f itself is a smooth
function, then depending on the concrete conditions we may use the Taylor formula
at x in order to obtain uniformly smooth separating functions on X, or at least some
structural information about X. We describe two examples of this notion. Stegall’s
variational principle holds in every Banach space with the RNP and the function g can
be chosen to be a functional from X *. As a result, if a Banach space with the RNP
admits twice Gateaux smooth bump function, we conclude that X is super-reflexive
and admits a norm with a power type 2 estimate on the modulus of smoothness.

The compact variational principle of Robert Deville and Maridn Fabian, which was
motivated by a paper of Jaroslav Pechanec, John H. M. Whitfield, and Viclav Zizler, is a
key tool for studying higher smoothness in Banach spaces. Its formulation is somewhat
different from the general description given above, but it leads to similar applications.
This principle (we prefer to avoid the precise formulation at this point) applies to
Banach spaces which do not contain ¢y, and it has lead to several strong structural
results. The most important structural result is that if X has no subspace isomorphic to
co and has a C¥-smooth bump, for large enough k, then X is super-reflexive, admits a
separating polynomial, and contains a subspace isomorphic to £,, p even.

Jaroslav Kurzweil has pioneered the field of higher smoothness by finding that the
best order of smoothness of L,-spaces is C (], except in the case when p is even
and the space admits a separating polynomial. In the latter case he constructed real
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analytic approximations for all continuous mappings from these spaces. In the rest of
the chapter we compute the best order of smoothness for several classes of Banach
spaces, notably the Orlicz spaces and the class of polyhedral Banach spaces.

In Chapter 6 we develop the theory of uniformly smooth mappings between Banach
spaces. We study the relationship between uniform continuity and weak uniform
continuity of the mapping and its higher derivatives. In particular, if a weakly uniformly
continuous mapping has a uniformly continuous kth derivative, then this derivative is
even weakly uniformly continuous. In Section 6.2 we introduce and study the important
concept of bidual extension for C kst _smooth mappings from the unit ball of a Banach
space X into ¥ to a C**-smooth mapping from the unit ball of X** into ¥ **. This
notion contains the classical bi-adjoint of a linear operator as a special case, but it is not
completely canonical and in general depends on some parameters in the construction.
This notion plays an important role later on in pushing some results for C(K') spaces
where K is scattered into the case of a general compact space K.

In Sections 6.3—6.6 we build the theory of W, -spaces, i.e. all those X such that
uniformly smooth functions in By map weakly Cauchy sequences in A By, for some
A € (0, 1], to convergent sequences. The main goal of this theory is to generalise some
classical properties of linear operators from C(K) spaces, described in Theorem 3.47,
into the setting of uniformly smooth mappings. This objective is achieved in the main
Theorem 6.57, which claims that weakly compact and uniformly smooth mappings
from the unit ball of C(K) spaces take weakly Cauchy sequences into norm convergent
ones. The first step of the proof is to show the rigidity of €7 with respect to uniformly
smooth functions. The second step consists of showing that C(K), for K scattered, are
‘W, -spaces. Next, we prove that the bidual extension of any uniformly smooth non-
compact mapping in €% (Bg,: Y) has a point where the derivative is non-compact,
and hence fixes a copy of ¢g. This implies that Y** has a subspace isomorphic to
co- Moreover, non-compact uniformly smooth mappings from C(K), K scattered,
can always be reduced to a suitable subspace isomorphic to ¢g where the restriction
remains non-compact. The case of a general C(K') space requires another ingredient,
Theorem 6.56, which claims that after passing to the bidual, weakly Cauchy sequences
in C(K) spaces are uniformly close to weakly Cauchy sequences in some C([0, «]).

In Section 6.7 we give some rather general results on the ranges of smooth mappings
(and derivatives of smooth functions) which illustrate that the theory of 'W-spaces works
under nearly optimal assumptions. Indeed, according to Theorem 6.69 no structural
property of the initial space is generally preserved by surjective C °°-smooth mappings
from Banach spaces with property 8. In the rest of the chapter our attention shifts to
smooth separating mappings from {,-spaces, proving strong structural result in this
case, based on the notions of a separating mapping and harmonic behaviour.

Smooth approximations in Banach spaces are studied in the last chapter of our book.
Unlike the finite-dimensional case, the unit ball of an infinite-dimensional Banach
space X is not a compact set and hence it is easy to find uniformly continuous functions
that are not uniformly approximable by polynomials on By . Interestingly enough, in
the special case of ‘W-spaces X not containing {1, uniformly C k_smooth functions
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can be uniformly approximated, together with their higher derivatives, by polynomials
on By . This result underlines the extremely poor supply of uniformly smooth functions
in these spaces, rather than the abundance of polynomials. Indeed, in this case all
polynomials are weakly uniformly continuous on By. This is again a situation when
smoothness properties take on very different shapes for co-like spaces (although X
considered here need not even contain cg!), and for super-reflexive spaces.

The main tool for studying C k_smooth approximations of continuous mappings are
C*-smooth partitions of unity, or alternatively C¥-smooth embeddings into cg. The
problem becomes more challenging if additional conditions are put on the approximants,
and the usual partitions of unity cannot be employed as they destroy the character
of the approximating functions. This concerns for example the problem of smooth
approximations preserving the Lipschitz constants, which is the first step for obtaining
approximations together with higher derivatives, a problem that remains widely open.
We finish the chapter by proving that if a separable Banach space admits a C k_smooth
equivalent norm, then every norm can be approximated on bounded sets by C k_smooth
renormings.

Let us make some remarks concerning the existing literature related to the subject
of our book. Introduction to abstract smooth analysis (real or complex) forms part of
Jean Dieudonné’s book [Dieu], which was a great source of inspiration for us. The
complex case, where all notions of smoothness coincide, has received more attention in
monographs, e.g. in [Hill], [Din], [Mu], [Na]. We have relied much on Sedn Dineen’s
book for its insights, historical comments, and ample references. The distinguishing
feature of the real setting, as opposed to complex one, is the intricate role played by the
Banach space structure and geometry for the supply of polynomials and C k_smooth
functions.

Concerning polynomials on finite dimension spaces, there are of course many
sources, see e.g. [MMR], [BE]. Apparently the main interest in polynomials in the
infinite-dimensional setting came from the study of analytic functions, see [Din] for
historical comments.

Finally, it was the monograph of Robert Deville, Gilles Godefroy, and Viclav Zizler
[DGZ], which has undertaken a systematic study of smoothness (including higher
smoothness) in the context of Banach space structure. Their book treats both the
separable and non-separable situation (in the latter they are still relatively up to date,
so we decided for the most part to omit it). Our book overlaps only to a small extent
with [DGZ], but the problems posed therein played a decisive role for the subsequent
development of the subject.

We mention that the first order smoothness theory is well covered (apart from [DGZ])
also in [Fab3], and the more introductory [FHHMZ]. The differentiability of Lipschitz
mappings is treated in [LPT]. We are not covering any aspects of this direction of
research. In a broader sense, our subject forms part of geometric non-linear analysis, a
fast growing subject whose foundations are laid out in [BenLi].

Concerning prerequisites, most of the background material on the linear structural
theory of Banach spaces can be found in [FHHMZ]. Deeper results from local theory,
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which play a crucial role throughout the book, can be found in [DJT]. These two refer-
ences provide a solid background for the material presented in our book, but our theory
draws on results from other areas as well. For the theory of Chebyshev polynomials we
suggest [Ri], tensor products are treated in [DefFl] or [Ry3]. A detailed exposition of
spreading models is in [Beal.a]. Structural theory of C(K) and £ -spaces, which is
used in Chapter 6, is covered in [LiTz1], and for C(K) spaces also in [Ros3]. Structural
theory of the classical Banach spaces is developed in more detail in [AK], [Dies2],
[LiTz2], and [LiTz3]. For topological results we refer mostly to [Eng].
For an additional source of open problem we refer to [FMZ].
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Notation

We fix some notation for objects and notions that the reader should be familiar with. By
N, Z, Q, R, and C we denote the sets of natural numbers, integers, rational numbers,
reals, and complex numbers respectively. We set Ng = N U {0}. By R* we denote the
set of positive real numbers and by Rg the set of non-negative real numbers. By R we
denote the extended real line, i.e. R = [—o0, +o0]. By K we denote the scalar field R
or C. We use the convention that a sum over an empty set is zero and a product over an
empty set is equal to 1. Further, x® = 1 for any x € K. For x € R we denote by [x]
the integer part of x, i.e. the unique number k € Z satisfying k < x < k + 1, by [x]
we denote the ceiling of x, i.e. the unique number k € Z satisfying k — 1 < x < k.

For a set A we denote its cardinality by | A| or card A. The cardinality of the con-
tinuum is denoted by c. By abusing the notation we write {xy },er C X meaning that
{xy}yer is a collection such that x,, € X foreachy € I'.

Let (P, p) be a metric space. We denote B(x,r) = {y € P; p(y,x) < r} and
U(x,r) ={y € P; p(y,x) < r} the closed, resp. open ball in P centred at x € P
with radius » > 0. In case that it is necessary to distinguish the spaces in which the
balls are taken, we will write Bp(x,r), resp. Up(x,r). By By and Uy we denote the
closed, resp. open unit ball of a normed linear space X. By Sy we denote the unit
sphere of a normed linear space X. An interior of a set A in a topological space is
denoted by Int A, its boundary is denoted by 9A.

Throughout the book we use the following convention: In each statement involving
multiple vector spaces we assume that all the spaces are over the same field K if not
specified otherwise. Furthermore, if not specified explicitly or in the beginning of the
chapter or section, then the statement holds both for K = R and K = C. When we
speak of a subspace of a Banach space, we always mean a closed subspace. General
subspaces will be referred to as “linear subspaces”. We define span @ = {0}. If X is
a normed linear space with a Schauder basis {e¢,} and x = Z;’;l Xnen € X, then
suppx = {n € N; x, # 0} is called a support of x; a finitely supported vector is
a vector with finite support. An algebraic dual of a vector space is denoted by X,
a topological dual of a topological vector space by X *. Inner product is denoted by
(x, y), and similarly we denote the evaluation in duality by ( f, x). Let X, Y be normed
linear spaces. For simplicity we say that X contains Y if X has a subspace isomorphic
toY.

By C(X:Y) we denote the set of continuous mappings between topological spaces
X, Y.If Y is a topological vector space, then C(X; Y) is a vector space. For functions,
i.e. mappings into the scalars, we use a shortened notation C(X) = C(X; K); from
the context it should always be clear whether K = R or K = C. For a mapping
f: X — Y, where Y is a vector space, we denote supp, f = f (Y \ {0}). If X
is a topological space, then we denote supp f = supp, f. An L-Lipschitz mapping
is a mapping that is Lipschitz with a constant L. By y4 we denote the characteristic
function of the set A4.
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If we say measure or Borel measure, we always mean a non-negative measure. On
the other hand, Radon measure means scalar-valued Radon measure. By supp u we
denote the support of a Borel measure p. The n-dimensional Lebesgue measure will
be denoted by A, or just A if the dimension is clear from the context.

All topological spaces in this volume are automatically and without mention assumed
to be Hausdorff.
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