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22nd Intersociety Energy Conversion Engineering Conference
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Wyndham Frankiin Plaza
Philadelphia, Pennsyivania ¥ X
August 10-14, 1987 The Intersociety Energy Conversion Engineering Conference provides a
R e forum to present and discuss engineering aspects of advanced technology or
Robert R. Barthelemy nonconventional energy conversion systems and devices. The conference is
:a;&m ymwonamw Labs supported by seven participating societies and three cooperating societies. The
Wright-Patterson AFB, Ohio 45433 American Institute of Aeronautics and Astronautics will serve as host society for
DA the 1987 IECEC. The conference will cover recent accongplishments in energy
Assistant Chairman conversion research, development, and engineering requirements for energy
Charles E. Jobe . conversion progress and application; disclosure of concepts with potential for
by future advancements; and results of research and engineering studies.
Wright-Patterson AFB, Ohio 45433
(513) 255-5953
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Sundstrand ATG Aerospace

4747 Harrison Avenue
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Philadelphia, PA 19103
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arine/Terrestrial Energy Systems
MHD & Other Topping Cycles
@Ruclear Fission

Npclear Fusion

Fossil Fuels Rankine Cycle
Electrical Propul ' Solar Energy Conversion

Electrochemicg - Solar Heating & Cooling

e

Energy Conservation Stlrlmg Cycle

Energy Power and Plannin§’ Thermoelectric Power

Energy Storage Systems Thermionic Power
Geothermal Power : Unique Power Systems
Hydrogen Energy Systems Wind Power

€9

Four copies of abstracts of papers should be submitted to the Technical Program Chairman by
December 1, 1986 for review by the Program Organizers. Summaries should contain about 500
words presenting facts that are new and significant and should indicate the results achieved.
The abstract should include an introductory statement indicating the purpose of the work and a
oa closing statement summarizing the significant new results. Authors will be notified of abstract
*E acceptance and will receive instruction for paper preparation on or about March 2, 1987.
Accepted papers are to be presented orally and authors will be required to provide a complete
camera ready manuscript by May 15, 1987 for publishing in the proceedings of the 1987 IECEC
meeting.

Unless otherwise specified, reply to: -

American Institute of Aeronautics and Astronautics, 1633 Broadway, New York, N.Y. 10019 (212) 581-4300

‘).
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ABSTRACT

Performances of gas-fired ideal boiler, conden-
sing boilers and conventional ones are simulated by
computer.

A numerical model estimates the seasonal efficien
cy of boiler, as a function of:

- external mean temperatures,

- boiler performances at full load,

- boiler stand-by losses (at null load),

- heating management mode (heating night interruption
or temperature lowering during night hours).

Simple equations permit to foresee reliable seaso
nal efficiency of boilers and their energetic quality,
as the capacity of using the heat value of natural gas
during heating season, in comparison with ideal boiler

BOTH CONVENTIONAL AND CONDENSING BOILERS can be simula
ted by a single numerical model. A full load performan
ce simulation of condensing boiler has been described
in a paper presented at the IECEC '84 (1)*. Steady-sta
te and cyclic tests have been carried out in our labo-
ratory, with continuous measurements of quantity of ge
nerated condensate, fuel consumption and temperatures.
A simulation of cyclic operation both of conventional
and condensing boilers is described in another paper
presented at the IECEC '85 (2).

In residential heating plants, a definitely inter
esting item is the seasonal fuel consumption estimate.
Normally, the user wants a constant temperature in eve
ry room (about 20C) with the possibility of lowering
it during the nights and week-ends. In Europe, a night
interruption of firing is required by law to reduce
fuel consumption, therefore, a reliable forecast of
seasonal efficiency must also simulate the boiler wor-
king during restart periods This working mode is diffe
rent from a cyclic one, because the boiler operates at
full load, but its return water temperatures are conti
nuously rising.

The energetic quality of a boiler can be defined
‘as its capacity of using the heat value of fuel during
the heating season, in comparison with ideal boiler.
The ideal boiler is defined as a boiler where the re-
turn water temperature is the same as the temperature
of flue-gases; besides, this ideal boiler has no excess
air of combustion and shows no heat losses towards the
surroundings, nor stand-by losses (fig. 1).

* Numbers in parentheses designate references ‘at the
end of paper.

8412-0986-3/86/0869-002/$06.00/0
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At the present time, the performances of boilers
and losses at null load are bLeing evaluated in labora-
tory without the possibility ‘of comparing the laborato
ry performances with the performances of boiler worki-
ng in the plant (3).
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Fig. 1. - Performances nl, C02Z, WC'l and TFl of ideal
boiler, as function of return water tempera-
ture TR.

The energetic quality of appliances whose operat-
ion depends on the user (such as washers, water heaters
, etc.) is evaluated by full load tests (4). Boilers
function at reduced loads most of the time and ener
getic quality can be evaluated only through the seaso

nal average efficiency.
Tests taken during the functioning of similar
plants, at the same climatic condit.ions, offered the



possibility of comparing condensing boilers with con-
ventional ones, while cyclic laboratory tests indica-
ted the boiler characteristics at reduced loads (2,5).

So far, theré is no record that the goal of attri
buting an absolute energetic parameter to a boiler to
define its saving quality has been achieved.

Furthermore, the existance of different types of
boilers (condensing, high efficiency and conventional)
seems to complicate the technical analysis which sho-
uld valid results of a single model in all cases.

It is therefore a matter of establishing an ener-
getic priority list based on both full and null load
tests: such tests are being conducted in some count-
ries, based on specific standards.

The authors have developed a numerical model of
the functioning of both conventional and condensing
gas-fired boilers (6); the model permits prediction of
their average seasonal efficiency, based on a variety
of parameters, the most important of which are:
~ boiler characteristics,

- control devices characteristics,
- characteristics of an average annual temperature and
geographical location.

The purpose of this paper is to describe briefly
this model and to analyze variations in seasonal effi-
ciency, based or characteristcs of actual boilers and
ideal boiler. An energetic quality factor, based on
seasonal efficiency of actual boilers compared with
seasonal efficiency of ideal boiler, will be possible.

The energetic quality factor is, in this way, based on .

1aboratory evaluated performances before the installa
tion.

SEASONAL AVERAGE EFFICIENCY OF A BOILER

The seasonal average efficiency with which the
high heat value is used by plant equals to:
L hourly Output
"3 hourly Input
_L hourly Output
I (hourly Output)/nh

nboiler+plant

(1)

where nh is the average efficiency per hour in the wor
king cycle and it takes into account three main losses:
- losses of boiler, 1-nc,CF;
- losses due to the control system, 1-nc,R;
~ losses of the distribution system, 1-ni.

1f we pretend that the control system affects on
ly the cyclic efficiency of the boiler nc, then we can
say that nc is product of the boiler efficiency nc,CF
if it is directly connected to plant (the most effi-
cient connection) by the value of influence of the con
trol system nc,R (2).

Then the efficiency nh of the boiler and plant
will be equal to:

nh = nc,CF * nc,R * ni =nc * ni (2)

If we want to examine the energetic quality of
the boilers only, we will have consider that:

- because the control system efficiency nc,R is not
generally constant, we will consider only the best
set-up of boiler to plant, the direct connection
(nc,R = 1);

- distribution system without heat losses (ni = 1);

therefore the values obtained with eq. (1) for the sea
sonal efficiency n:

3)

=(energetic quality factor)-en, bador 5 it

"boiler
are valid only if:
nh = nc,CF (4)

It is clear that any conclusion drawn in this pa-
per on energetic quality of boilers only to the boiler
directly connected to the plant and that more general
conclusions on average seasonal efficiency of boil:r
and plant may be drawn after examination of different
types of control systems and distribution ones.

FULL LOAD, NULL LOAD AND CYCLIC EFFICIENCIES

The working of a boiler in an actual heating plant
can be simulated if we can predict the boiler efficien

.cy at partial loads. A model of boiler working with an

ON-OFF cyclic mode can be based on the assumptions (2):
- during the ON time, the efficiency is the same as du-
ring full load operation. The efficiency depends on

the return water temperature; '
- durng the OFF time, the efficiency is null and ener
gy losses are a function of the average tempetaturé—
of the boiler.
This model permits predxct1on of the cyclic effi-
ciency with an equation rather simple, valid for loads
between 0 and 1 and presented as follows:

nc,CF = no/(1 + (no-n*+CI)+PR/CI/PC%) (5)

vhere:

no is the full load efficiency of the boiler, which
varies with the return water temperature, especxal
ly for condensing boilers;

n* is the full load efficiency when the return water
temperature TR is 60C and outlet water temperatu-
re T is 80C;

CI  is the capacity factor, the ratio between the use
ful power required from boiler at the nominal out
put PC*;

PR is the power lost at null load to keep the boiler
at the same boiler temperature as during the ON-
-OFF cycle and with the direct connection.

Ve can reasonably assume that the efficiency of
present boilers at full load no takes into comnsidera-
tion two types of losses only:

- Losses due to radiation, convection and conduction

towards the surroundings, in any case rather limited

(2 to 4%); losses depend on the average temperature of

the water in the boiler and must not be confused with

stand-by ones, which are to be charged to the air cir-
culation during the OFF time only; as a conséquence,

n* and no take into account these losses too.

- Losses due to latent and sensible energy of flue-ga- .

ses. Thermal energy of flue-gases varies 'with the re-

turn water TR, related to the heat exchange efficiency.

The return water temperature TIC, for which the conden

sation is beginning and the mass of the condensate

WC'20 at the return water temperature of 20C are to be

experimentally determined. Based on expermental te-

sts conducted on a few boilers, we can believe that,
for temperatures of return water TR ranging between



TIC and the reference temperature of 20C, the mass of
condensate per standard cubic meter of natural gas is:

WC' = WC'20 + (1 - ((TR-20)/(TIC-20))?) (6)
In this way, efficiency at full load no is:

no = n* + R/HV-WC' + cpFS/HVe(TF*-TF) -VFS + (7)
+ cpW/HV e (TF*~TF) VW

no = n* + R/HV.WC' + cp/HV+(TR*-TR) *
«(VFS+(1.612-WC") /0.806) (8)

and therefore it is a function of :+, TIC, TR and
WC'20 only.

Conventional boilers and high-efficiency boilers
show a low TIC (20-40C) and WC'20 (n0.1kg/Sm®) values,
so that no remains practically constant for the whole
range of TR. The value of TIC for condensing boilers
is roughly around 50+55C, while WC'20 has a value of
0.9+1.2kg/Sm®. The ideal boiler efficiency is shown
in fig. 1 with the following equation:

nl = 1 = ((cpFT*VFT + cpW+(VW-WC'/0.806)) TR +
+ R+ (VW+0.806-WC')) /HV 9)

The null load of actual boilers can be expressed
as a function ‘of the boiler average temperature TC, of
input of permanent pilot PP and of the temperature TP
at which the pilot can keep the boiler at stand-by:

PR = PP/(TP?-202).(TC2-202) (10)

In home boilers, the power of permanent pilot is nor-
mally 0.01-PC* (the pilot power is in fact PP=230W,
while the boiler output is PC*=23kW). It is convenient
to refer PR to the sverage temperature TP reached at
stand-by by the boiler when only the permanent pilot
is functioning, since a laboratory test is rather sim

ple and does not require a complicated rig.

When the permanent pilot power PP1 is different
from PP, if we accept that the loss be a parabolic cur
ve, TP1 follows the equation:

PR = PP1/(TP12-202)+(TC2-20%) =
= PP/( TP%-202).(TC2-207%) (11

It is rather easy to figure that the TP temperature
would be if the pilot power was 0.01+PC*., We believe
TP as typical value of the losses and it will be as:

TP = (20 + 0.01-PC*/PP1-(TP12-202))°® (12)

For the direct connection, the capacity factor
CI results in proportion with the return water tempe-
rature TR:

CI = (TR-20)/(TR*-20) (13)

and also, in proportion, with the b 'ler-average tem-
perature TC:

CI = (TC-20)/(TC*-20) o Q14)
and:
TM* = TR* + 20K

TC* = TR* + 10K ,1.€18)

In conclusion, the cyclic efficiency nc,CF is a
function of n*, TIC, WC'20 and TP, as far as the boi-
ler is concerned and of temperature TR as far as the

plant is concerned.
During the heating season, the temperature TR de-

pends on the surroundings temperature, which varies de

pending on the reference year.

CALCULATION OF THE AVERAGE SEASONAL "EFFICIENCY

The calculation of the average seasonal efficien-
cy is based on a program which determines step by step
for each hour of heating season:

- the boiler load CI (capacity factor),

= the return water temperature TR,

- the average. temperature of the water inside the boi-
ler, TC,

- the cyclic efficiency of the boiler at capacity fac-
tor CI,

- the hourly output heat and its progressive. sum,

- the hourly input heat and its progressive sum, and,
finally, the average seasonal efficiency, eq. (1).

Data provided to the program were:

1) the outside temperature, hour by hour, during the
heating season, referred to geographical location, whi
ch varies too;

2) the parameters of the boiler n*, TIC, PP, PC*, TP;
the variable WC'20 is not indicated because it has
been expressed as function of TIC;

3) two models of heating management, to simulate the
night reduction of load:

3a) the lowering of the comfort temperature from 20C
to 16C during night hours, without considering the i-
nertia of plant and taking for granted that the plant
works all night long;

3b) turning off of boiler during night hours as desc-
ribed by italian law with a consequent lowering of the
inside temperature; this will require, at restarting,
a simulated thermal inertia of plant.

To reduce data combination to a minimum, the au-
thors have simplified the analysis as follows:

1) the outside temperature varies based on a simple
law already described in a previous paper presented at
IECEC'85 (6), where the only variable is the average
yearly temperature TE of the location. TE varies bet-
ween 10 and 18C;
2) to simulate boilers already installed, new type of
boilers (high efficiency and condensing boilers) and
ideal boiler, parameters characterizing the model, n¥*,
TiC. WC'20 and TP, varies as follows:

n* = 0,70, 0.75, 0.80, 0.85

TIC = 20, 25, 30, ... 59C and WC'20 = 0.1+1.5

TP = 39,355 40.°. 0. °76C

and: n*l = 0.876, TICl = 59C, TPl= 100C, PPl= 0
for the ideal boiler.

The fuel considered was natural gas (methane).
3) when the yearly average temperature varies between
10 and 18C, the impact on the average seasonal effi-
ciency n of the average yearly temperature TE of the
location is very low, less than 2:37, and on energy
quality factor negligeable. On.other hand, »n and EQF
are much more influenced by the boiler characteris-
tics. For this reason we can reasonably believe that
energetic quality factor does not depend on the geo-
“graphical location and it can be considered as an in-
trinsic parameter of the boiler.
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Fig. 2 « Numerical results of average seasonal efficien
cy as function of parameters of boiler.
(TE = 14C, night heating attenuation 20>16C).

SEASONAL EPPICIENCYYWITH ATTENUATION OF T"MPERATURE
DURING NIGHT HOURS FROM 20 TO 16C

The results of the calculations lead to plots as
shown in fig. 2, as the parameters n*, TIC and TP vary.

The plots refer to annual average temperature TE of 14C.

As already stated, the yearly average temperature
TE between 10 and 18C has an influence of less than 2%
3% on'the seasonal efficiency of the boiler. The avera
ge seasonal efficiency of a boiler in a location where
the temperature TE equals to 14C may be meaningful al-
so to areas not too different from the location at TE
of 14C, However, it is necessary to take for granted
that the connection between the boiler and the plant
be of direct type and that during the hot season, both
the boiler and the pilot be turned off.

Effect of losses at null load is of about 1% when
TP varies between 30 amd 70C. On the other hand, the ef
fect of the variables TIC and n* is very strong.

The average seasonal efficiency when the inside
night temperature is attenuated to 16C, for a geograp-
hical’location where TE = 14C can be expressed rather
correctly as follows:

natt,14 = (n* + 7.88+(TIC-20)%/107)-

*(1=(PP/BCH+n* /(TP?~20%)~1,44/10%) +3-10°/1.58)  (16) #
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Fig. 3 - Numerical results of average seasonal efficie
ncy as function of parameters of boiler.
(TE = 14C, night heating interruption).

As the location varies, the same boiler varies its ave
rage seasonal efficiency, in comparison with natt,14:

natt,TE = natt,14 - 6+((TE-10)2/16-1)/10"/(1-n*)+
+ (TE-14) /500 (TIC-20)/(59-20) (17)

The same fig. 2 shows the energetic quality factor, as-
function of parameters of boiler, too.

-

SEASONAL EFFICIENCY WITH NIGHT INTERRUPTION OF HEATING

In comparison with previous case, the boiler is
turned off for 10 hours (e.g. from 9pm to 7am) in ac-
cordance with italian laws for energy conservation.

The inside temperature will spontaneously decrease from
20C of comfort. In this case, it is necessary to consi
der the thermal inertia of the heating plant. This me-
ans that a full load cycle instead of a cyclic one be
initiated at 7:00hours. The starting time needed to
bring the average water temperature from the initial
20C to the average temperature required by the cyclic
functioning of plant, depends on weather conditions at
7:00am hours and on relation between the power of the
boiler. and the mass of water and material of the plant.

Water, boiler, conduits and radiators are conside

.red as an equivalent water mass of 35kg per kW of boi-
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