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Preface

As an Oxford Fellow and Tutor for more than a quarter of a
century I have had the pleasure of initiating and supervising
the experimental researches of a large number of young gradu-
ates in the field of molecular vibrational spectroscopy. In
consequence I have learned where difficulties with the theory
most often arise, and have had considerable experience in
helping to deal with them. During sabbatical leave in 1968 as
Visiting Professor at the University of Tennessee, I gave a series
of about thirty talks on molecular vibrations to a class of doc-
torate candidates from the faculties of physics and of chemistry.
This afforded me the opportunity to assemble and organize the
relevant subject matter in note form. The present book is based
upon these notes and the discussions to which the talks gave rise.

Nobody undertaking an exposition of this kind could fail
to owe an incalculable debt to those two authoritative and ex-
tensive works, Infra-red and Raman Spectra of Polyatomic
Molecules by Herzberg (Van Nostrand, 1945), and Molecular
Vibrations by Wilson, Decius, and Cross (McGraw-Hill, 1955).
I have made frequent use of them ever since their publication.
It seemed to me, however, that there was a need for a book on a
more modest scale, which would not only expound the essential
features of vibrational theory but at the same time would ex-
plain and develop the special mathematical ideas and methods
involved. The present volume is the result of my attempts to
fill this need. It is divided into two related parts, the first of
which deals with the classical treatment of the vibrations of
molecular models, and the second with the quantum-mechanical
theory of vibrational infra-red and Raman spectra. In the
course of the exposition the relevant properties and uses of
matrices and vectors are explained, and symmetry theory is
progressively developed. No attempt is made to deal with a
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broad range of molecular species; on the contrary, all the
principal theoretical themes are illustrated by the same few
simple examples, which are thus subjected to full and detailed
treatment. It is hoped that the book will be found useful, not
only by young graduates in physics and chemistry with an in-
terest in vibrational spectroscopic research, but also by ex-
perienced workers in related fields and by Honours students.

It is a pleasure to express my gratitude to two Oxford
colleagues: to Dr. C. J. Bradley of Jesus College for helpful
discussions on symmetry theory, and to Dr. S. Altmann of
Brasenose College for kindly reading through the completed
work in typescript and sending me his comments. My thanks
are also due to the U.S. National Science Foundation for their
invitation to spend six months in the United States in 1968
as a Senior Foreign Scientist Fellow, and to the staff of the
Chemistry Department of the University of Tennessee at
Knoxville (and in particular to Professor W. H. Fletcher) who
made me very welcome and gave me facilities for the compila-
tion of the notes which formed the basis for this book. The
main work of writing it has been done during the tenure of an
Emeritus Fellowship, for which I am much indebted to the
Leverhulme Foundation.

L. A W.

Jesus College, Oxford
1971
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1 A simple example to illustrate the
application of classical mechanics

1.1. Reasons for undertaking a classical treatment

THz vibrations of molecules are subject to quantum mechanics,
It may well be asked, therefore, why we should undertake a
lengthy discussion in terms of classical mechanies. Broadly
speaking, the reasons are rooted in the close relationship between
the classical and the quantum theories of molecular vibrations,
in consequence of which an analysis on the basis of the former
will give insight and information which will be very valuable
with respect to the latter.

More particularly, our classical treatment will be based upon
the assumption (in practice a very good one) that the vibrations
are simple-harmonic. In this special case the advantages for
later quantum-mechanical treatment are very considerable.
We shall be led to introduce special kinds of coordinates in terms
of which the classical vibrational problem assumes very simple
forms; and when we come to the treatment on the basis of the
Schrodinger wave-equation we shall find that the adoption of
these same coordinates will effect a corresponding simplification.
Moreover, the symmetry properties of the classical coordinates
will have very important parallels in the symmetry properties of
the wave-mechanical eigenfunctions, upon which the spectro-
scopic selection rules depend,

The simple-harmonic approximation leads to one especially
noteworthy result concerning the actual values of the vibrational
frequencies in any particular case. As observed in spectroscopy,
a fundamental is the frequency of the radiation absorbed or
emitted in consequence of a transition between quantized
energy levels. We will designate it by vg,. On the other hand,
the frequency-value calculated by classical theory on the basis
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[1.1] A simple example to sllustrate the

of a suitable model is a mechanical frequency. We will designate
it by »,. It transpires that vy, = v,. This remarkable and con-
veniently uncomplicated result is peculiar to vibrations which
are simple-harmonic.

1.2. The simple mechanical system to be studied

The remainder of this chapter will be devoted almost entirely
to considering a simple mechanical system, without questioning
whether such a system could serve usefully as a model of a
molecule. The object of this exercise is to illustrate some features

Fia. 1.1. A simple mechanical system to illustrate the application
of classical mechanies.

of classical mechanics and, in particular, to familiarize the
reader with some of the types of coordinates used. Suitable for
our purposes is a system consisting of three masses joined in
a straight line by two identical springs of negligible mass,
We shall confine our attention to motions along the line of
centres. In order to ensure the exclusion of motions in other
directions, and also to exclude rotations of the individual
magsses, we may suppose each to consist of a uniform block of
the same square cross-section, able to move in a piston-like
manner inside a closely fitting and perfectly frictionless
horizontal tube (see Fig. 1.1). For convenience the masses are
numbered as shown. The masses 1 and 3 are equal, both having
the value m. The central mass 2 has the different value M.
When all three are at rest and at equilibrium, the configuration
will obviously be such that the centres of masses 1 and 3 will be
equidistant from the centre of mass 2.

1.3. Mechanical treatment in terms of simple
displacement coordinates

We shall not be concerned with the actual positions of the
mass-centres in their equilibrium configuration, but rather with
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