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Preface

This is the second volume of a 2-volume textbook* which evolved from a
course (Mathematics 160) offered at the California Institute of Technology
during the last 25 years.

The second volume presupposes a background in number theory com-
parable to that provided in the first volume, together with a knowledge of
the basic concepts of complex analysis.

Most of the present volume is devoted to elliptic functions and modular
functions with some of their number-theoretic applications. Among the
major topics treated are Rademacher’s convergent series for the partition
function, Lehner’s congruences for the Fourier coefficients of the modular
function j(t), and Hecke’s theory of entire forms with multiplicative Fourier
coefficients. The last chapter gives an account of Bohr’s theory of equivalence
of general Dirichlet series.

Both volumes of this work emphasize classical aspects of a subject which
in recent years has undergone a great deal of modern development. It is
hoped that these volumes will help the nonspecialist become acquainted
with an important and fascinating part of mathematics and, at the same
time, will provide some of the background that belongs to the repertory of
every specialist in the field.

This volume, like the first, is dedicated to the students who have taken
this course and have gone on to make notable contributions to number
theory and other parts of mathematics.

T.M. A
January, 1976

* The first volume is in the Springer-Verlag series Undergraduate Texts in Mathemaiics under
the title Introduction to Analytic Number Theory.



Preface to the Second Edition

The major change is an alternate treatment of the transformation formula for
the Dedekind eta function, which appears in a five-page supplement to Chap-
ter 3, inserted at the end of the book (just before the Bibliography). Other-
wise, the second edition is almost identical to the first. Misprints have been
repaired, there are minor changes in the Exercises, and the Bibliography has
been updated.

T.M. A
July, 1989
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Elliptic functions

1.1 Introduction

Additive number theory is concerned with expressing an integer n as a sum
of integers from some given set S. For example, S might consist of primes,
squares, cubes, or other special numbers. We ask whether or not a given
number can be expressed as a sum of elements of § and, if so, in how many
ways this can be done.

Let f(n) denote the number of ways » can be written as a sum of elements
of §. We ask for various properties of f(n), such as its asymptotic behavior
for large n. In a later chapter we will determine the asymptotic value of the
partition function p{n) which counts the number of ways n can be written asa
sum of positive integers < n.

The partition function p(n) and other functions of additive number theory
are intimately related to a class of functions in complex analysis called
elliptic modular functions. They play a role in additive number theory analo-
gous to that played by Dirichlet series in multiplicative number theory. The
first three chapters of this volume provide an introduction to the theory of
elliptic modular functions. Applications to the partition function are given
in Chapter 5.

We begin with a study of doubly periodic functions.

1.2 Doubly periodic functions
A function f of a complex variable is called periodic with period w if
S+ w) = f(2)
whenever z and z +  are in the domain of f. If w is a period, so is nw for

every integer n. If w; and w, are periods, so is mw, + nw, for every choice of
integers m and n.



1: Elliptic functions

Definition. A function f is called doubly periodic if it has two periods w,
and w, whose ratio w,/w, is not real.

We require that the ratio be nonreal to avoid degenerate cases. For
example, if w, and w, are periods whose ratio is real and rational it is easy
to show that each of w, and w, is an integer multiple of the same period. In
fact, if w,/w, = a/b, where a and b are relatively prime integers, then there
exist integers m and n such that mb + na = 1. Let w = mw,; + nw,. Then
w is a period and we have

w a w w
w=w1<m+nuf>=w,(m+n5>=—b-'(mb+na)=71,

$0 wy = bw and w, = aw. Thus both w, and w, are integer multiples of w.

Ifthe ratio w,/w, is real and irrational it can be shown that f has arbitrarily
small periods (see Theorem 7.12). A function with arbitrarily small periods
is constant on every open connected set on which it is analytic. In fact, at
each point of analyticity of / we have

’ T f(Z+Z,,)""f(Z)
s - i L2 2SR

where {z,} is any sequence of nonzero complex numbers tending to 0. If f
has arbitrarily small periods we can choose {z,} to be a sequence of periods
tending to 0. Then f(z + z,) = f(2) and hence f'(z) = 0. In other words,
f'(z) = 0 at each point of analyticity of f, hence f must be constant on every
open connected set in which f'is analytic.

1.3 Fundamental pairs of periods

Definition. Let f have periods w;, w, whose ratio w,/w; is not real. The
pair (w;, w,) is called a fundamental pair if every period of f is of the form
mw, + nw,, where m and n are integers.

Every fundamental pair of periods w,, w, determines a network of
parallelograms which form a tiling of the plane. These are called period
parallelograms. An example is shown in Figure 1.1a. The vertices are the
periods w = mw,; + nw,. It is customary to consider two intersecting edges
and their point of intersection as the only boundary points belonging to the
period parallelogram, as shown in Figure 1.1b.

Notation. If , and w, are two complex numbers whose ratio is not real
we denote by Qw,, w,), or simply by Q, the set of all linear combinations
mw, + nw,, where m and n are arbitrary integers. This is called the lattice
generated by w, and w,.

2



1.3: Fundamental pairs of periods

Figure 1.1

Theorem 1.1, If (w,, w,) is a fundamental pair of periods, then the triangle
with vertices 0, w,, w, contains no further periods in its interior or on its
boundary. Conversely, any pair of periods with this property is fundamental.

ProoF. Consider the parallelogram with vertices 0, w,, w, + w,, and w,,
shown in Figure 1.2a. The points inside or on the boundary of this parallel-
ogram have the form

Z = 0 + ﬂwz,

where 0 < 2 < 1 and 0 < 8 < 1. Among these points the only periods are 0,
,, W,, and @, + ©,, so the triangle with vertices 0, w,, w, contains no
periods other than the vertices.

wy, + W, Wy + W,y
W, w>

wWHw=w +w,

W, w,

(a) (b)
Figure 1.2



1: Elliptic functions

Conversely, suppose the triangle 0, w,, @, contains no periods other
than the vertices, and let w be any period. We are to show that w = mw, +
nw, for some integers m and n. Since w,/w, is nonreal the numbers w, and
w, are linearly independent over the real numbers, hence

w=tw, + tyw,
where ¢, and 1, are real. Now let [t] denote the greatest integer < ¢ and
write
ty =[]+ r,ty=[t;]+r,,where0O<r, <land0<r, < 1.
Then
w = [t ]Jw, = [t)]w;, = riw, + ro,;.

If one of r, or r, is nonzero, then ryw, + r,w, will be a period lying inside
the parallelogram with vertices 0, w,, w,, w, + w,. But if a period w lies
inside this parallelogram then either w or w, + w, — w will lie inside the
triangle 0, ,, w, or on the diagonal joining w, and w,, contradicting the

hypothesis. (See Figure 1.2b.) Therefore r, =r, = 0 and the proof is
complete. a

Definition. Two pairs of complex numbers (w,, ®,) and (w,’, w,’), each with
nonreal ratio, are called equivalent if they generate the same lattice of
periods; that is, if Q(w;, @,) = Qw,’, w,").

The next theorem, whose proof is left as an exercise for the reader,
describes a fundamental relation between equivalent pairs of periods.
Theorem 1.2. Two pairs (w,, w;) and (w,’, w,") are equivalent if, and only if,

) . fa b\ .. .
there is a 2 x 2 matrix (c with integer entries and determinant

d
ad — bc = +1, such that

(-0 )

W, = aw, + bw,,
W' = cw; + do,.

or, in other words,

1.4 Elliptic functions

Definition. A function f'is called elliptic if it has the following two properties:
(a) f is doubly periodic.
{b) S is meromorphic (jts only singularities in the finite plane are poles).



1.4: Elliptic functions

Constant functions are trivial examples of elliptic functions, Later we
shall give examples of nonconstant elliptic functions, but first we derive some
fundamental properties commonto all elliptic functions.

Theorem 1.3. A nonconstant elliptic function has a fundamental pair of periods.

Proor. If f'is elliptic the set of points where fis analytic is an open connected
set. Also, f has two periods with nonreal ratio. Among all the nonzero
periods of f there is at least one whose distance from the origin is minimal
{(otherwise f would have arbitrarily small nonzero periods and hence would
be constant). Let @ be one of the nonzero periods nearest the origin. Among
all the periods with modulus |w| choose the one with smallest nonnegative
argument and call it w,. (Again, such a period must exist otherwise there
would be arbitrarily small nonzero periods.) If there are other periods
with modulus |w,| besides w, and —w,, choose the one with smallest
argument greater than that of @, and cali this w,. If not, find the next
larger circle containing periods # nw, and choose that one of smallest
nonnegative argument. Such a period exists since f has two noncollinear
periods. Calling this one w, we have, by construction, no periods in the
triangle 0, w,, w, other than the vertices, hence the pair (w,, w,) is funda-
mental, O

If fand g are elliptic functions with periods w, and w, then their sum,
difference, product and quotient are also elliptic with the same periods. So,
too, is the derivative f.

Because of periodicity, it suffices to study the behavior of an elliptic
function in any period paralielogram.

Theorem 1.4. If an elliptic function f has no poles in some period parallelogram,
then f is constant.

PROOF. If f has no poles in a period parallelogram, then f is continuous and
hence bounded on the closure of the parallelogram. By periodicity, f is
bounded in the whole plane. Hence, by Liouville’s theorem, fis constant. O

Theorem 1.5. If an elliptic function f has no zeros in some period parallelogram,
then fis constant.

PROOF. Apply Theorem 1.4 to thé reciprocal 1/f, a

Note. Sometimes it is inconvenient to have zeros or poles on the bound-
ary of a period parallelogram. Since a meromorphic function has only a
finite number of zeros or poles in any bounded portion of the plane, a period
parallelogram can always be translated to a congruent parallelogram with
no zeros or poles on its boundary. Such a translated parallelogram, with no
zeros or poles on its boundary, will be called a cell. Its vertices need not be
periods.



1: Elliptic functions

Theorem 1.6. The contour integral of an elliptic function taken along the
boundary of any cell is zero.

ProoF. The integrals along parallel edges cancel because of periodicity. []

Theorem 1.7. The sum of the residues of an elliptic function at its poles in any
period parallelogram is zero.

ProOF. Apply Cauchy’s residue theorem to a cell and use Theorem 1.6. [

Note. Theorem 1.7 shows that an elliptic function which is not constant
has at least two simple poles or at least one double pole in each period
parallelogram.

Theorem 1.8. The number of zeros of an elliptic function in any period parallel-
ogram is equal to the number of poles, each counted with multiplicity.

PRrOOF. The integral

1[fe,
2ni Je f(2)

taken around the boundary C of a cell, counts the difference between the
number of zeros and the number of poles inside the cell. But f’/f is elliptic
with the same periods as f, and Theorem 1.6 tells us that this integral is zero.

0O

Note. The number of zeros (or poles) of an elliptic function in any period
parallelogram is called the order of the function. Every nonconstant elliptic
function has order > 2.

1.5 Construction of elliptic functions

We turn now to the problem of constructing a nonconstant elliptic function.
We prescribe the periods and try to find the simplest elliptic function having
these periods. Since the order of such a function is at least 2 we need a
second order pole or two simple poles in each period parallelogram. The
two possibilities lead to two theories of elliptic functions, one developed by
Weierstrass, the other by Jacobi. We shall follow Weierstrass, whose point
of departure is the construction of an elliptic function with a pole of order
2 at z = 0 and hence at every period. Near each period w the principal part
of the Laurent expansion must have the form

A + B
z-—w? z—-w




1.5: Construction of elliptic functions

For simplicity we take A = 1, B = 0. Since we want such an expansion near
each period @ it is natural to consider a sum of terms of this type,

1
%(z - w)?

summed over all the periods w = mw, + nw,. For fixed z # w this is a
double series, summed over m and a. The next two lemmas deal with con-
vergence properties of double series of this type. In these lemmas we denote
by Q the set of all linear combinations mw, + nw,, where m and n are
arbitrary integers.

Lemma 1. If a is real the infinite series

3 -
o

wen @

w#0

converges absolutely if, and only if, o > 2.

PrOOF. Refer to Figure 1.3 and let r and R denote, respectively, the minimum
and maximum distances from 0 to the parallelogram shown. If w is any of
the 8 nonzero periods shown in this diagram we have

r<|lw| <R (for 8 periods w).
wl + w;

w; — w, w,
Wy — W,y

—w; T W,

Figure 1.3
In the next concentric layer of periods surrounding these 8 we have 2- 8 = 16
new periods satisfying the inequalities
2r < |w[ < 2R - (for 16 new periods w).
In the next layer we have 3-8 = 24 new periods satisfying

3r <|w| < 3R  (for 24 new periods w),



