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Preface

Many of the problems facing physicists, engineers, and applied mathematicians
involve such difficulties as nonlinear governing equations, variable coefficients,
and nonlinear boundary conditions at complex known or unknown boundaries
that preclude solving them exactly. Consequently, solutions are approximated
using numerical techniques, analytic techniques, and combinations of both.
Foremost among the analytic techniques are the systematic methods of per-
turbations (asymptotic expansions) in terms of a small or a large parameter or
coordinate. This book is concerned only with these perturbation techniques.

The author’s book Perturbation Methods presents in a unified way an account
of most of the perturbation techniques, pointing out their similarities, differences,
and advantages, as well as their limitations. Although the techniques are described
by means of.examples that start with simple ordinary equations that can be
solved exactly and progress toward complex partial-differential equations, the
material is concise and advanced and therefore is intended for researchers and
advanced graduate students only. The purpose of this book, however, is to
present the material in an eleméntary way that makes it easily accessible to
advanced undergraduates and first-year graduate students in a wide variety of
scientific and engineering fields. As a result of teaching perturbation methods
for eight years to first-year and advanced graduate students at Virginia Poly-
technic Institute and State University, I have selected a limited number of
techniques and amplified their description considerably. Also I have attempted
to answer the questions most frequently raised by my students. The techniques
are described by means of simple examples that consist mainly of algebraic and
ordinary-differential equations.

The material in Chapters 3 and 15 and Appendices A and B cannot be found
in Perturbation Methods. Chapter 3 discusses asymptotic expansions of integrals.
Chapter 15 is devoted to the determination of the adjoints of homogeneous
linear equations (algebraic, ordinary-differential, partial-differential, and integral
equations) and the solvability conditions of linear inhomogeneous problems.
Appendix A summarizes trigonometric identities, and Appendix B summarizes
the properties of linear ordinary-differential equations and describes thé symbolic
method of determining the solutions of homogeneous and inhomogeneous
ordinary-differential equations with constant coefficients.
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viii PREFACE

The reader should have a background in calculus ani elementary ordinary
differential equations.

Each chapter contains a number of exercises. For more exercises, the reader
is referred to Perturbation Methods by Nayfeh and Nonlinear Oscillations by
Nayfeh and Mook. Since this book is elementary, only a list of the pertinent
books is included in the bibliography without any attempt of citing them in
the text. .

I amindebted to K. R. Asfar and D. T. Mook for reading the whole manuscript
and to L. Watson, M. Williams, C. Prather, S. A. Ragab, I. Wickman, A. Yen,
Y. Liu, H. Reed, J. Dederer, Y. Ma, and W. S. Saric for reading parts ot the
manuscript. Many of the figures were drawn by T. H. Nayfeh, K. R. Asfar,
I. Wickman, T. Dunyak, and T. McCawly; and I wish to express my appreciation
to them. Finally, I wish to thank Patty Belcher, Janet Bryant, and Sharon
Larkins for typing the manuscript.

AL HASAN NAYFEH

Blacksburg, Virginia
April 1980
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CHAPTER 1

Introduction

1.1. Dimensional Analysis

Exact solutions are rare in many branches of fluid mechanics, solid mechanics,
motion, and physics because of nonlinearities, inhomogeneities, and general
boundary conditions. Hence, engineers, physicists, and applied mathematicians
are forced to determine approximate solutions of the problems they are facing.
These approximations may be purely numerical, purely analytical, or a combina-
tion of numerical and analytical techniques. In this book, we concentrate on the
purely analytical techniques, which, when combined with a numerical technique
such as a finite-difference or a finite-element technique, yield very powerful and
versatile techniques.

The key to solving modern problems is mathematical modeling. This process
involves keeping certain elements, neglecting some, and approximating yet
others. To accomplish this important step, one needs to decide the order of
magnitude (i.e., smallness or largeness) of the different elements of the system
by comparing them with each other as well as with the basic elements of the
system. This process is called nondimensionalization or making the variables
dimensionless. Consequently, one should always introduce dimensionless
variables before attempting to make any approximations. For example, if an
element has a length of one centimeter, would this element be large or small?
One cannot answer this question without knowing the problem being con-
sidered. If the problem involves the motion of a satellite in an orbit around the
earth, then one centimeter is very very small. On the other hand, if the problem
involves intermolecular distances, then one centimeter is very very-large. As a
second example, is one gram small or large? Again one gram is very very small
compared with the mass of a satellite but it is very very large compared with the
mass of an electron. Therefore, expressing the equations in dimensionless form
brings out the important dimensionless parameters that govern the behavior of
the system. Even if one is not interested in approximations, it is recommended
that one perform this important step before analyzing the system or presenting
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2 INTRODUCTION

experimental data. Next, we give a few examples illustrating the process of
nondimensionalization.

EXAMPLE 1

We consider the motion of a particle of mass m restrained by a linear spring
having the constant k and a viscous damper having the coefficient u, as shown in
Figure 1-1. Using Newton’s second law of motion, we have

m—+u—+ku=0 a.n

where u is the displacement of the particle and ¢ is time. Let us assume that the
particle was released from rest from the position u, so that the initial conditions
are

u(0) =u, 3—1: 0=0 1.2

In this case, u is the dependent variable and ¢ is the independent variable. They
need to be made dimensionless by using a characteristic distance and a character-
istic time of the system. The displacement u can be made dimensionless by using
the initial displacement u, as a characteristic distance, whereas the time # can be
made dimensionless by using the inverse of the system’s natural frequency w, =
Vk[m. Thus, we put

u*=— *=wyt
Uo

where the asterisk denotes dimensionless quantities. Then,

du _d(uou*) dr* _ du*
dr dr*  dr oMo e
d*u _ , d*u*
drr Qo0 g

so that (1.1) becomes

A
3

Figure 1-1. A mass restrained by a spring and a viscous damper.



DIMENSIONAL ANALYSIS 3

d*u* du*
mwaue Et_‘; + puwoldp d7+ kuou* =0
Hence,
d*u* du* k
+u*—+ *=0
ar?  F g T mar
or
d*u* du*
a7 TH g Tt =0 43
where
ok 14)
mdwg
In terms of the above dimensionless quantities, (1.2) becomes
du*
*0)=1 d —-—(@0)=0 1.5
w©=1 and Z2(0) (1)

Thus, the solution to the present problem depends only on the single param-
eter u*, which represents the ratio of the damping force to the inertia force or
the restoring force of the spring. If this ratio is small, then one can use the
dimensionless quantity u* as the small parameter in obtaining an approidmate
solution of the problem, and we speak of a lightly damped system. We should
note that the system cannot be considered lightly damped just because u is
small; u* = u/mwe = p//km must be small.

EXAMPLE 2
Let us assume that the spring force is a nonlinear function of u according to
fspring»zku + kyu? : (1.6)
where k and k, are constants. Then, (1.1) becomes
d*u  du
mEtT'qu;"’kui'kzuz: 1.7)

Again, using the same dimensionless quantities as in the preceding example, we
have
d*u* du*

u
2 -
mugwg 22 + pug wg ;t—;+kuou‘ +koudu*® =0

or



4 INTRODUCTION

d*u* du*
FrD +‘y"‘dt—“+u"‘+eu“l2 =0 1.8
where
k
*= and =22 (19)
mdweo k

The initial conditions transform as in (1.5). Thus, the present problem is a func-
tion of the two dimensionless parameters u* and €. As before, u* represents the
ratio of the damping force to the inertia force or the linear restoring force. The
parameter € represents the ratio of the nonlinear and linear restoring forces of
the spring.

When we speak of a weakly nonlinear system, we mean that k,u,/k is small.
Even if k, is small compared with k, the nonlinearity will not be small if u, is
large compared with k/k,. Thus, € is the parameter that characterizes the
nonlinearity.

EXAMPLE 3

As a third example, we consider the motion of a spaceship of mass m that is
moving in the gravitational field of two fixed mass-centers whose masses 7, and
m, are much much bigger than m. With respect to the Cartesian coordinate
system shown in Figure 1-2, the equations of motion are

md’_x__ mm,Gx _ mm,G(x - L) 110
dt? (xz +y2)3/2 [(x = L)z +y2]3/2 ( . )
d? mm,G mm,G
LY o Y s (1.11)

m ar 2 +y2)2 - [(x- L) +y?] 72

where ¢ is the time, G is the gravitational constant, and L is the distance between
m, and m,.

In this case, the dependent variables are x and y and the independent variable
is t. Clearly, a characteristic length of the problem is L, the distance between the
two mass centers. A characteristic time of the problem is not as obvious. Since

<

om

3

—f P

sz
I
1

- 1

Figure 1-2. A satellite in the gravitational field of two fixed mass centers.



DIMENSIONAL ANALYSIS 5

the motions of the masses m, and m, are assumed to be independent of that of
the spaceship, m, and m, move about their center of mass in ellipses. The
period of oscillation is
2nL3?
T=F7—7F——=
VG(my +m;)
so that the frequency of oscillation is

wo =L \/G(m, + my) ' 1.12)

Thus, we use the inverse of w, as a characteristic time. Then, we introduce di-
mensionless quantities defined by

x.=i'x_ y.:L.Z, t.:wot (1.13)
so that
dx _d(x*L) dt* _ dx* d’x_L d*x*
dt dr* dt ar*  dr g
dy_dOLy At bt Ly L dy
dt dt* dt ®dr* dr? ° dr%?
Hence, (1.10) and (1.11) become
, d*x* mm,GLx* mm,GL(x* - 1)
meo 2 = =
dr* [Ll(xgz +y.2)] 3/2 [LZ(xg _ 1)2 +L2yg2]3/2
, d*y* mm,GLy* mmyGLy*
mLwy — == =5 -
drs? LA+ LA er- 1P + L)
er
d’x* _ mG x* _ myG (x*-1)
dt‘z L3w(2) (X.Z +y‘2)3/2 Lawf, [(X* _ 1)2 +y¢2]3/2 (114)
d’y*  mG y* _ m,G y*
dr*? L33 (*2 +y*2)7  [308 [(x* - 1) +y*2] 72 (1.15)
Using (1.12), we have
m|G - n, sz _ m,
L*wi my+my, LW} m, +m,
Hence, if we put
m m
2__=¢ then ——=1-¢ (1.16)



6 INTRODUCTION
and (1.14) and (1.15) become
d’x* _  (1-e)x* e(x*-1)

di*? - (xﬂ +y.z)3/z - [Cc* - 1)2 +y..2]3/2

d2y* (1-e)y* ey* 1 18
e R e R TI LCR

(1.17)

Therefore, the problem depends only on the parameter e, which is usually
called the reduced mass. If m, represents the mass of the earth and m, the mass
of the moon, then

1
L8 1
T a1

1+—

80

which is small and can be used as a perturbation parameter in determining an
approximate solution to the motion of.a spacecraft in the gravitational field of
the earth and the moon.

EXAMPLE 4
As a fourth example, we consider the vibration of a clamped circular plate of
radius a under the influence of a uniform radial load. If w is the transverse
displacement of the plate, then the linear vibrations of the plate are governed by
2

3 .
DV4w - PV?w - p3t7w=0 (1.19)
where ¢ is the time, D is the plate rigidity, P is the uniform radial load, and p is
the plate density per unit area. The boundary conditions are

ow

=0 —=0 tr=
w ar atr=a

1.20
w < o atr=0 ( )

In this case, w is the dependent variable and ¢ and r are the independent
variables. Clearly, 4 is a characteristic length of the problem. The characteristic
time is assumed to be T and it is specified below. Then, we define dimension-
less variables according to

Hence,



