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Introduction 1

1 Introduction

There is no permanent place in the world for ugly mathematics [Hardy,1].

This book deals with the shape of cells and cell organelles in plants and
animals, and changes of shape associated with various life processes. The
cell membranes and cytoskeleton proteins build these shapes based on
physical forces. A mathematical/geometrical description of cellular and
molecular shapes is presented in this book, and the biological relevance is
discussed in the epilogue. We demonstrate here new mathematics for
cellular and molecular structures and dynamic processes.

Life began in water, and every single function of life takes place in an
aqueous environment. A profound way of classification in chemistry is the
relation and interaction between molecules, or groups within molecules, and
water. Molecules (or parts of molecules) can attract water in which case
they are called hydrophilic. As the opposite extreme they can strive to
avoid water; these molecules or molecular parts are termed hydrophobic.
Most biomolecules possess both these properties; they are amphiphilic.
This is a fundamental principle which determines the organisation of
biomolecules - from the folding of peptide chains into native structures of
proteins, to self-assembly of lipid and protein molecules into membranes.
One consequence of the existence of these two media is that the interface
between them define surfaces that tend to be closed. The lipid bilayer of
membranes, for example, always form closed surfaces; the hydrocarbon
chain core is never exposed to water. The curvature of these surfaces is an
important concept in order to understand structural features above the
molecular level. Surface and colloid science deals with forces involved in
formation of such organisations. The behaviour of the colloidal state of
matter involves van der Waals interaction, electrostatic forces, so-called
hydration forces and hydrophobic forces. The colloidal level of structure
extended towards curvature of surfaces and finite periodicity is a main

theme in our book. These concepts are seldom considered in molecular
biology.

Our present understanding of the cell membrane dates back to Luzzati’s
classical work from 1960 [2], where the liquid character of the hydrocarbon
chains in liquid-crystalline lipid-water phases with the combination of long-
range order with short-range disorder first were revealed. Another
important aspect was introduced by Helfrich [3]; the curvature elastic
energy. Long time ago, two of us [4] proposed the idea that a bilayer
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conformation analogous to that of cubic phases might occur in cell
membranes. Phase transitions in three dimensions, obtained by exposure of
membrane lipids to general anaesthetic agents, for example, were
interpreted as experimental evidence [5]. These aspects were summarised in
a monograph - The Language of Shape [6] - focusing on the role of
curvature in membranes. Cubic lipid-water phases and cubic cell membrane
assemblies were described as infinite periodic minimal surfaces (IPMS).
Some thousand examples where the membrane is folded into a three-
dimensional aggregate were shown to be cubic structures consistent with the
three fundamental IPMS (the P-, D- and G-surface). Here we propose that
the occurrence of perfect cubic symmetry of membrane assemblies reflects
a vegetative state with lack of concentration gradients, resulting in an
equilibrium-like situation. We conclude that active states of membrane
systems, such as the endoplasmatic reticulum, are far from a compositional
equilibrium, and therefore exhibit systematic variations of curvature. Such
active states of membrane organisations are characterised based on the new
mathematics introduced here.

The IPMS description reflects a static structure and might be regarded as a
time-averaged conformation of the bilayer. Recently we introduced a
description of the lipid bilayer of membranes based on nodal surfaces of
standing wave conformations [7,8]. We consider this description to be
significant to cellular phenomena, providing a true description of the
dynamic character of cell membranes. The mathematical basis of the wave
dynamics is extended in this book. We consider this feature to be of utmost
importance in cell membrane physiology, providing space-time relations.

Cell membranes exhibit lipid bilayer states on the border towards a
transition into a reverse type of structure (in three dimensions
corresponding to phase transitions from lamellar to cubic or reverse
hexagonal lipid-water phases). This tendency results in a high inner packing
pressure of the bilayer, and therefore increases the elastic rigidity of the
lipid bilayer. The wave motions of the bilayer are related to this elastic
rigidity.  Membrane-embedded  enzymes  responsible  for  lipid
synthesis/modification can utilise the inner packing pressure as an on/off
switch to control membrane lipid composition. This is an example of shape
control via physical properties. The mathematical wave description
reflects the dynamics of shape.

Another important feature of the cell membranes is their control of
topology in the cell - separation of the inside and the outside. Considering
any cell in our body and moving backwards in time via the embryo and
through earlier generations down the evolution, the DNA has never been
exposed to the outside world. There is always a membrane enveloping DNA
in all forms of life, as we know them. A closed membrane providing shape
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and topology is thus a necessity for life. Its implicit expression in DNA is a
challenging question, which we will consider in the epilogue.

There are hundreds of journals in molecular biology today dealing with
structure and function. In our interdisciplinary approach we can only deal
with some basic principles behind shape and shape changes. In our
description of vesicle traffic between cellular compartments, for example,
we apply only mathematics of lipid bilayers with varying curvature. We are
aware of the numerous studies which have demonstrated involvement of for
example kinesin in the endoplasmatic reticulum and of dynein in the Golgi
structure. Our model of cell membrane dynamics and morphology, although
ignoring the role of microtubuli, still gives a description consistent with
reality. This might be due to the redundancy in biology; systems working in
parallel to guarantee functional safety. Evidence is also given for the
occurrence of mechanical waves at the axon membrane, with a
conformational transition accompanying the electrical pulse. Finally by
applying these new mathematics it has been possible to derive the structure
of the surface film lining the lung alveoli.

We describe the lipid bilayer of cell membranes by surfaces located at the
middle of the bilayer. The liquid-like hydrocarbon chains extend about 15 -
20 A from this surface, and they might be compared with the delocalised
electrons forming molecular surfaces. It is in this context tempting to go
further in this analogy, perhaps to speculate on the possibility of quantum
phenomena with phonons involved in the lipid bilayer motions.

In order to derive the various cell structures discussed in this book the
following new tools/concepts have been used:

The exponential scale [9], which was developed to describe shapes of bodies
like polyhedra, crystals, or anything that may be described with faces.

Structures, crystal structures, symmetries, rod structures and molecules are
also conveniently described.

The symmetry and structure of lipid membranes in confined space, like a
cubosome, follow the electron densities of smaller molecules, like B,H, and
B;Hy;. We propose such lipid structures also have a standing wave
behaviour - quantized or not. We describe this analogy of the quantized
space and the lipid space with the exponential scale. We find great parts of
these mathematics to be closely related to shapes in biology.

The Gaussian distribution function (GD) - a special case of the exponential
scale - which is also known as the error function. It is used to describe
diffusion, and it is also the ground state solution for the Schrédinger
harmonic oscillator. We use the GD function to generate finite periodicity
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to describe structures like -the cubosomes. We use the GD function to
describe biological motion and we use the related Hermite operator to
describe periodic biological motion. Examples are the flagella motion, the
motor proteins and cell division. The fractal growth of a tree and the
formation of icosahedral symmetry of virus are other examples.

We describe transportation with exponential functions. We describe
budding and docking of vesicles, the endoplasmatic reticulum and the Golgi

machine, holes in double membranes, the nuclear pore complex, and much
more.

The GD-function is used here to define surfaces of the condensed state of
cellular biomolecules. To illustrate this approach let us again consider a
lipid bilayer with water on each side. Most of the lipid constituents have
very low solubility (down to 10? M), which varies with environmental

factors, such as pH and present ions. We are dealing with non-equilibrium
conditions, with lipid molecules either moving inwards to condensate at the
surface, or moving out into the water phase from the surface. The
molecular distribution at the surface follows the GD function. Such

concentration changes may even result in transient shape changes of cell
membranes.

The standing wave dynamic conformation of membranes is a third new
concept we apply in order to describe membrane shape. As mentioned
earlier the membrane assemblies exhibiting cubic symmetry can be described
as [PMS when the conformation is averaged over time but the wave
character provides information on dynamic membrane processes.

Readers who directly want to see the biological relevance of this approach
can start with chapters 8, 13 and 14 and later read the earlier chapters
focusing on the mathematics. For readers who lack a mathematical
background, the basic concepts we are using are introduced in t!le
appendices. The use of Mathematica in the calculations is shown with
examples in appendix 9.
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2 Counting, Algebra and Periodicity - the Roots of
Mathematics are the Roots of Life

All things are numbers [Pythagoras,1].

Using simple counting, or algebra, we show the principles of periodicity,
which is just using roots, number, or planes in space. We also show you
what sine is.

With counting we make saddles move in bilateral or screw repetition. We
continue in that way and show that fundamental mathematics is built of
planes, and go from a molecule to a cubosome, which is an example of how
symmetry shows up in a 3D space of just numbers.

We show how cubic surfaces nucleate from the simplest of saddles and
planes.

We show how to move a surface or a cubosome in space.

We show how to derive the nodal surface geometry from algebra - or just
by counting.

2.1 Counting and Sine

We assume mathematics used by Nature may be described in simple terms.

We start from the beginning;

x=1 is a plane in space, and so is x=2. With such planes we formulate our

first equation, which also is an example of the fundamental theorem of
algebra.

(x=D(x-2)(x-3)(x-4)=0 2:1.1
This operation we call counting and we want to see what it means in 3D.
The roots are 1, 2, 3 and 4. We see in figure 2.1.1 the planes, and we
discover that counting - put together in form of multiplication into a

product - is a beautiful way to get periodicity. Which so far is finite.

We presume Nature may be described by counting positive numbers.
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in every case it is possible to make a

For reasons of convenience we shall sometimes in the description below use
but

zero and negative numbers,
parallel transformation to the positive part of space as shown below wi

examples.
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Figure 2.1.1 Periodicity from the
fundamental theorem of algebra.
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Equation 2.1.1 is the fundamental theorem of algebra, and Euler realised
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Figure 2.1.2 Periodicity from sine.
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Below we give the formula in equation 2.1.2, from Euler for the infinite
products, which he showed was identical with the power expansion of sin(x)
(an alternative definition). This definition of the circular functions which
uses infinite products is attractive since it brings in the translation.

2 2 2
sinx = x(1 - 2-)(1- ——)(1- ;‘
'n:2 221t2 3n

2.12
54

Rearranging formula 2./.2 into 2.1.3 it becomes clear that sine is identical
to the fundamental theorem of algebra of an infinite number of terms [2].
The roots of algebra are the nodes of periodicity - or the wave functions.

SinTx =

T x(x2 =12 - 4)(x2 = 9)..(% —n?) 213
(n!)?

2.2 Three Dimensions; Planes and Surfaces, and Surface Growth

From equation 2.1.3 we take two of the roots and extend them to three
dimensions in the following equations.

X2 —1=0 221
y2—1=0 222
22 -1=0 | 223

The planes are found in the corresponding figures 2.2.1-3.

If we, in equation 2.2.4 add two of the equations, the planes collaborate to
form a cylinder, see figure 2.2.4.

x2+y2—1=0 2.24

And if we add all three equations, six planes collaborate to form the sphere
in figure 2.2.5.



