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INTRODUCTION

Direct3D 11 is a rendering library for writing high performance 3D graphics
applications using modern graphics hardware on the Windows platform. (A modified
version of DirectX 9 is used on the XBOX 360.) Direct3D is a low-level library in the
sense that its application programming interface (API) closely models the underlying
graphics hardware it controls. The predominant consumer of Direct3D is the games
industry, where higher level rendering engines are built on top of Direct3D. However,
other industries need high performance interactive 3D graphics as well, such as
medical and scientific visualization and architectural walkthrough. In addition, with
every new PC being equipped with a modern graphics card, non-3D applications are
beginning to take advantage of the GPU (graphics processing unit) to offload work
to the graphics card for intensive calculations; this is known as general purpose GPU
computing, and Direct3D 11 provides the compute shader API for writing general
purpose GPU programs. Although Direct3D is usually programmed from native
C++, stable NET wrappers exist for Direct3D (e.g., http://slimdx.org/) so that you can
access this powerful 3D graphics API from managed applications. Finally, at their 2011
BUILD conference (http://www.buildwindows.com/), Microsoft recently showed
that Direct3D 11 will play the key role in writing high performance 3D “Metro”
applications in Windows 8. All-in-all, the future looks bright for Direct3D developers.

This book presents an introduction to programming interactive computer
graphics, with an emphasis on game development, using Direct3D 11. It teaches the
fundamentals of Direct3D and shader programming, after which the reader will be
prepared to go on and learn more advanced techniques. The book is divided into
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XXVI INTRODUCTION TO 3D GAME PROGRAMMING

three main parts. Part I explains the mathematical tools that will be used throughout
this book. Part II shows how to implement fundamental tasks in Direct3D, such
as initialization, defining 3D geometry, setting up cameras, creating vertex, pixel,
geometry, and compute shaders, lighting, texturing, blending, stenciling, and
tessellation. Part III is largely about applying Direct3D to implement a variety of
interesting techniques and special effects, such as working with meshes, terrain
rendering, picking, particle systems, environment mapping, normal mapping,
displacement mapping, real-time shadows, and ambient occlusion.

For the beginner, this book is best read front to back. The chapters have been
organized so that the difficulty increases progressively with each chapter. In this
way, there are no sudden jumps in complexity leaving the reader lost. In general,
for a particular chapter, we will use the techniques and concepts previously
developed. Therefore, it is important that you have mastered the material of a
chapter before continuing. Experienced readers can pick the chapters of interest.

Finally, you may be wondering what kinds of games you can develop after
reading this book. The answer to that question is best obtained by skimming
through this book and seeing the types of applications that are developed. From
that you should be able to visualize the types of games that can be developed based
on the techniques taught in this book and some of your own ingenuity.

INTENDED AUDIENCE

This book was designed with the following three audiences in mind:
1. Intermediate level C++ programmers who would like an introduction to 3D
programming using the latest iteration of Direct3D.

2. 3D programmers experienced with an API other than DirectX (e.g., OpenGL)
who would like an introduction to Direct3D 11.

3. Experienced Direct3D 9 and Direct3D 11 programmers wishing to learn the
latest iteration of Direct3D.

PREREQUISITES

It should be emphasized that this is an introduction to Direct3D 11, shader
programming, and 3D game programming; it is not an introduction to general
computer programming. The reader should satisfy the following prerequisites:

1. High School mathematics: algebra, trigonometry, and (mathematical) functions,
for example.
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2. Competent with Visual Studio: should know how to create projects, add files,
and specify external libraries to link, for example.

3. Intermediate C++ and data structure skills: comfortable with pointers, arrays,
operator overloading, linked lists, inheritance, and polymorphism, for example.

4. Familiarity with Windows programming with the Win32 API is helpful, but
not required; we provide a Win32 primer in Appendix A.

REQUIRED DEVELOPMENT TOOLS AND HARDWARE

To program Direct3D 11 applications, you will need the DirectX 11 SDK; the
latest version can be downloaded from http://msdn.microsoft.com/en-us/directx/
default.aspx. Once downloaded, follow the instructions given by the installation
wizard. At the time of this writing, the latest SDK version is the June 2010 DirectX
SDK. All of our sample programs were written using Visual Studio 2010.

Direct3D 11 requires Direct3D 11 capable hardware. The demos in this book
were tested on a Geforce GTX 460.

USE OF THE D3DX LIBRARY

Since version 7.0, DirectX has shipped with the D3DX (Direct3D Extension) library.
This library provides a set of functions, classes, and interfaces that simplify common
3D graphics related operations, such as math operations, texture and image operations,
mesh operations, and shader operations (e.g., compiling and assembling). That is to
say, D3DX contains many features that would be a chore to implement on your own.

We use the D3DX library throughout this book because it allows us to focus on
more interesting material. For instance, we would rather not spend pages explaining
how to load various image formats (e.g., .bmp, .jpeg) into a Direct3D texture interface
when we can do it in a single call to the D3DX function p3px11createTextureFromFile.
In other words, D3DX makes us more productive and lets us focus more on actual
content rather than spending time reinventing the wheel.

Other reasons to use D3DX:

1. D3DX is general and can be used with a wide range of different types of 3D
applications.

2. D3DXis fast, at least as fast as general functionality can be.

3. Other developers use D3DX. Therefore, you will most likely encounter code

that uses D3DX. Consequently, whether you choose to use D3DX or not, you
should become familiar with it so that you can read code that uses it.
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4. D3DX already exists and has been thoroughly tested. Furthermore, it becomes
more improved and feature rich with each iteration of DirectX.

USING THE DIRECTX SDK DOCUMENTATION AND
SDK SAMPLES

Direct3D is a huge API and we cannot hope to cover all of its details in this one
book. Therefore, to obtain extended information it is imperative that you learn
how to use the DirectX SDK documentation. You can launch the C++ DirectX
online documentation by executing the windows_graphics.chm file in the DirectX
SDK\Documentation\DirectX9 directory, where DirectX SDK is the directory you
installed DirectX to. In particular, you will want to navigate to the Direct3D 11
section (see Figure 1).

The DirectX documentation covers just about every part of the DirectX
API; therefore it is very useful as a reference, but because the documentation
doesn’t go into much depth, or assumes some previous knowledge, it isn’t the
best learning tool. However, it does get better and better with every new DirectX
version released.
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Figure 1. Direct3D Programming Guide in the DirectX documentation.
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As said, the documentation is primarily useful as a reference. Suppose you come
acrossa DirectX related type or function, say the function 1p3p11pevice: : CreateBuffer,
for which you would like more information. You simply do a search in the
documentation index and you get a description of the object type, or in this case
function; see Figure 2.

“Now > [ this book we may direct you to the documentation for further details from

time to time.

We would also like to point out the available Direct3D sample programs that
ship with DirectX SDK. The C++ Direct3D samples are located in the DirectX SDK\
Samples\C++\Direct3D10 and DirectX SDK\Samples\C++\Direct3D11 directories.
Each sample illustrates how to implement a particular effect in Direct3D. These
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samples are fairly advanced for a beginning graphics programmer, but by the end of
this book you should be ready to study them. Examination of the samples is a good
“next step” after finishing this book. Note that we mentioned both the Direct3D 10
and Direct3D 11 samples. Direct3D 11 extends Direct3D 10 with new features, so
Direct3D 10 techniques still apply when making a Direct3D 11 application; hence,
it is still worthwhile to study the Direct3D 10 samples to see how a particular effect
can be implemented.

CLARITY

We want to emphasize that the program samples for this book were written
with clarity in mind and not performance. Thus, many of the samples may be
implemented inefficiently. Keep this in mind if you are using any of the sample code
in your own projects, as you may wish to rework it for better efficiency. Moreover,
in order to focus on the Direct3D API, we have built minimal infrastructure on
top of Direct3D. In a large 3D application, you will likely implement a rendering
engine on top of Direct3D; however, the topic of this book is the Direct3D API,
not rendering engine design.

SAMPLE PROGRAMS AND ONLINE SUPPLEMENTS

The companion DVD and Web sites for this book (www.d3dcoder.net and
www.merclearning.com) play an integral part in getting the most out of this book.
On the DVD and Web site you will find the complete source code and project
files for every sample in this book. In many cases, DirectX programs are too large
to fully embed in a textbook; therefore, we only embed relevant code fragments
based on the ideas being shown. It is highly reccommended that the reader study
the corresponding demo code to see the program in its entirety. (We have aimed
to make the demos small and focused for easy study.) As a general rule, the
reader should be able to implement a chapter’s demo(s) on his or her own after
reading the chapter and spending some time studying the demo code. In fact, a
good exercise is trying to implement the samples on your own using the book and
sample code as a reference.

In addition to sample programs, the website also contains a message board. We
encourage readers to communicate with each other and post questions on topics
they do not understand or on topics for which they need clarification. In many
cases, getting alternative perspectives and explanations to a concept speeds up
the time it takes to comprehend it. And lastly, additional program samples and
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tutorials are planned to be added to the web site on topics that we could not fit
into this book.

DEMO PROJECT SETUP IN VISUAL STUDIO 2010

The demos for this book can be opened simply by double-clicking the corresponding
project file (.vcxproj) or solution file (.sln). This section describes how to create and
build a project from scratch using the book’s demo application framework using
Visual Studio 2010 (VS10). As a working example, we will show how to recreate and
build the “Box” demo of Chapter 6.

It is assumed that the reader has already successfully downloaded and installed
the latest version of the DirectX SDK (available at http://msdn.microsoft.com/
directx/), which is needed to program DirectX applications. The installation of the
SDK is straightforward, and the installation wizard will walk you through it.

Create a Win32 Project

First, launch VS10, then go to the main menu and select File >New >Project, as
shown in Figure 3.

The New Project dialog box will appear (Figure 4). Select Visual C++ > Win32
from the Visual C++ Project Types tree control on the left. On the right, select
Win32 Project. Next, give the project a name and specify the location you wish to
checked by default. Now hit OK.

A new dialog box will appear. On the left, there are two options: Overview and
Application Settings. Select Application Settings, which produces the dialog box
shown in Figure 5. From here, be sure that Windows application is chosen, and
the Empty project box is checked. Now press the Finish button. At this point, you
have successfully created an empty Win32 project, but there are still some things
to do before you can build a DirectX project demo.

2 Start Page - Microsoft Visual Studio

File Edit View Debug Team Data Tools Test Window Help

New » ] Project. Ctri+Shift+N |
Open * & WebSite Shift+Alt+N .
Close 43 Team Project.. i

) File.. Ctri=N S

Project From Existing Code...

Figure 3. Creating a new project.
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Figure 4. New Project settings.
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Figure 5. Application settings.
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Linking the DirectX Libraries

We now need to link the DirectX libraries to our project. For a debug build, add
the additional libraries:

d3d1l.1lib;

d3dx11d.1ib;

D3DCompiler.lib;

Effectslld.lib;

dxerr.lib;

dxgi.lib;

dxguid.lib;

For a release build, add the same libraries above, but remove the ‘d’ character at
the end of d3dx11d.1ib and Effects11d.1ib, so that they are just d3dax11.1ib and
Effectsll.lib.

To link the library files, right-click on the project name under the Solution Explorer
and select Properties from the dropdown menu (Figure 6). This launches the dialog

Solution Explorer

RS
4 Solution MyD3D11Project’ (1 project

« T »a-D3D11Project

L) Build ixternal Dependencies
Rebuild deader Files
source Files
Clean fe.x.u _—e es
jource Files
Project Only »
Profile Guided Optimization »

Build Customizations,
Add ’
References..

f Class Wizard.. Ctri=Shift+X

54 View Class Diagram
Set as StartUp Project
Debug > i

5 Add Solution to Source Control.
& Cut Ctri=X
Project Project Properties
X Remove Dei i
Rename i MyD3D11Project
Unioad Project Dependencies
Rescan Saolution
. i amespace MyD3D11Project
_] . Open Foider in Windows Explorer 1

Properties Alt=Enter

Figure 6. Right-click on the project and select Properties from the context menu.
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box shown in Figure 7. From the left-hand-side tree control, select Configuration
Properties > Linker >Input. Then on the right-hand-side, specify the library file
names on the Additional Dependencies line. Press Apply and then OK.

Setting up the Search Paths

We now need to make sure Visual Studio knows the directories in which to search
for DirectX header and library files. Again, right-click on the project name under
the Solution Explorer and select Properties from the dropdown menu (Figure
6). This launches the dialog box shown in Figure 7. From the left-hand-side tree
control, select Configuration Properties > VC++ Directories. Then on the right-
hand-side, you will need to add additional items for Executable Directories,
Include Directories, and Library Directories (Figure 8).

“Note: @ Keep in mind that the exact path for the DirectX SDK depends on where you
installed the DirectX SDK, and the exact path for the Common directory
depends on where you extract the sample programs. Furthermore, you are free
to move the Common directory, but you must remember to update the search
paths in Visual Studio accordingly.



