INTRODUCTION TO

3D GAME
PROGRAMMING

WITH DIRECTX® 11

FRANK D. LUNA

Introduction to
3D GAME PROGRAMMING

WITH DIRECTX® 11

Frank D. Luna

N
MERCURY LEARNING AND INFORMATION

Dulles, Virginia
Boston, Massachusetts

Copyright ©2012 by MERCURY LEARNING AND INFORMATION LLC. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any

way, stored in a retrieval system of any type, or transmitted by any means, media, electronic display
or mechanical display, including, but not limited to, photocopy, recording, Internet postings, or scanning,
without prior permission in writing from the publisher.

Publisher: David Pallai

MERCURY LEARNING AND INFORMATION
22841 Quicksilver Drive

Dulles, VA 20166
info@merclearning.com
www.merclearning.com
1-800-758-3756

This book is printed on acid-free paper.
Frank D. Luna. Introduction to 3D GAME PROGRAMMING WITH DIRECTX 11
ISBN: 978-1-9364202-2-3

The publisher recognizes and respects all marks used by companies, manufacturers, and
developers as a means to distinguish their products. All brand names and product names
mentioned in this book are trademarks or service marks of their respective companies. Any
omission or misuse (of any kind) of service marks or trademarks, etc. is not an attempt to
infringe on the property of others.

Library of Congress Control Number: 2012931119

12131432

Our titles are available for adoption, license, or bulk purchase by institutions, corporations,
etc. For additional information, please contact the Customer Service Dept. at 1-800-758-3756
(toll free).

The sole obligation of MERCURY LEARNING AND INFORMATION to the purchaser is to replace the
disc, based on defective materials or faulty workmanship, but not based on the operation or
functionality of the product.

Introduction to
3D GAME PROGRAMMING
wiITH DIRECTX® 11

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book (the “Work”), you agree that this license grants
permission to use the contents contained herein, but does not give you the right
of ownership to any of the textual content in the book or ownership to any of the
information or products contained in it. This license does not permit uploading of the Work
onto the Internet or on a network (of any kind) without the written consent of the Publisher.
Duplication or dissemination of any text, code, simulations, images, etc. contained
herein is limited to and subject to licensing terms for the respective products, and
permission must be obtained from the Publisher or the owner of the content, etc.,
in order to reproduce or network any portion of the textual material (in any media)
that is contained in the Work.

MERCURY LEARNING AND INFORMATION LLC (“MLI” or “the Publisher”) and
anyone involved in the creation, writing, or production of the companion disc,
accompanying algorithms, code, or computer programs (“the software”), and any
accompanying Web site or software of the Work, cannot and do not warrant the
performance or results that might be obtained by using the contents of the Work.
The author, developers, and the Publisher have used their best efforts to insure the
accuracy and functionality of the textual material and/or programs contained in this
package; we, however, make no warranty of any kind, express or implied, regarding
the performance of these contents or programs. The Work is sold “as is” without
warranty (except for defective materials used in manufacturing the book or due to
faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone
involved in the composition, production, and manufacturing of this work will not be
liable for damages of any kind arising out of the use of (or the inability to use) the
algorithms, source code, computer programs, or textual material contained in this
publication. This includes, but is not limited to, loss of revenue or profit, or other
incidental, physical, or consequential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replacement
of the book, and only at the discretion of the Publisher. The use of “implied
warranty” and certain “exclusions” vary from state to state, and might not apply to
the purchaser of this product.

To my nieces and nephews,
Marrick, Hans, Max, Anna, Augustus, and Presley

ACKNOWLEDGMENTS

I would like to thank Rod Lopez, Jim Leiterman, Hanley Leung, Rick Falck, Tybon
Wu, Tuomas Sandroos, and Eric Sandegren for reviewing earlier editions of the
book, and I would like to thank Jay Tennant and William Goschnick for reviewing
select chapters of the current edition. I want to thank Tyler Drinkard for building
some of the 3D models and textures used in the demo programs of this book. I
also want to thank Dale E. La Force, Adam Hoult, Gary Simmons, James Lambers,
and William Chin for their assistance. Lastly, I want to thank the staff at Mercury
Learning and Information, in particular, David Pallai.

xxiii

INTRODUCTION

Direct3D 11 is a rendering library for writing high performance 3D graphics
applications using modern graphics hardware on the Windows platform. (A modified
version of DirectX 9 is used on the XBOX 360.) Direct3D is a low-level library in the
sense that its application programming interface (API) closely models the underlying
graphics hardware it controls. The predominant consumer of Direct3D is the games
industry, where higher level rendering engines are built on top of Direct3D. However,
other industries need high performance interactive 3D graphics as well, such as
medical and scientific visualization and architectural walkthrough. In addition, with
every new PC being equipped with a modern graphics card, non-3D applications are
beginning to take advantage of the GPU (graphics processing unit) to offload work
to the graphics card for intensive calculations; this is known as general purpose GPU
computing, and Direct3D 11 provides the compute shader API for writing general
purpose GPU programs. Although Direct3D is usually programmed from native
C++, stable NET wrappers exist for Direct3D (e.g., http://slimdx.org/) so that you can
access this powerful 3D graphics API from managed applications. Finally, at their 2011
BUILD conference (http://www.buildwindows.com/), Microsoft recently showed
that Direct3D 11 will play the key role in writing high performance 3D “Metro”
applications in Windows 8. All-in-all, the future looks bright for Direct3D developers.

This book presents an introduction to programming interactive computer
graphics, with an emphasis on game development, using Direct3D 11. It teaches the
fundamentals of Direct3D and shader programming, after which the reader will be
prepared to go on and learn more advanced techniques. The book is divided into

XXV

XXVI INTRODUCTION TO 3D GAME PROGRAMMING

three main parts. Part I explains the mathematical tools that will be used throughout
this book. Part II shows how to implement fundamental tasks in Direct3D, such
as initialization, defining 3D geometry, setting up cameras, creating vertex, pixel,
geometry, and compute shaders, lighting, texturing, blending, stenciling, and
tessellation. Part III is largely about applying Direct3D to implement a variety of
interesting techniques and special effects, such as working with meshes, terrain
rendering, picking, particle systems, environment mapping, normal mapping,
displacement mapping, real-time shadows, and ambient occlusion.

For the beginner, this book is best read front to back. The chapters have been
organized so that the difficulty increases progressively with each chapter. In this
way, there are no sudden jumps in complexity leaving the reader lost. In general,
for a particular chapter, we will use the techniques and concepts previously
developed. Therefore, it is important that you have mastered the material of a
chapter before continuing. Experienced readers can pick the chapters of interest.

Finally, you may be wondering what kinds of games you can develop after
reading this book. The answer to that question is best obtained by skimming
through this book and seeing the types of applications that are developed. From
that you should be able to visualize the types of games that can be developed based
on the techniques taught in this book and some of your own ingenuity.

INTENDED AUDIENCE

This book was designed with the following three audiences in mind:
1. Intermediate level C++ programmers who would like an introduction to 3D
programming using the latest iteration of Direct3D.

2. 3D programmers experienced with an API other than DirectX (e.g., OpenGL)
who would like an introduction to Direct3D 11.

3. Experienced Direct3D 9 and Direct3D 11 programmers wishing to learn the
latest iteration of Direct3D.

PREREQUISITES

It should be emphasized that this is an introduction to Direct3D 11, shader
programming, and 3D game programming; it is not an introduction to general
computer programming. The reader should satisfy the following prerequisites:

1. High School mathematics: algebra, trigonometry, and (mathematical) functions,
for example.

INTRODUCTION XXVil

2. Competent with Visual Studio: should know how to create projects, add files,
and specify external libraries to link, for example.

3. Intermediate C++ and data structure skills: comfortable with pointers, arrays,
operator overloading, linked lists, inheritance, and polymorphism, for example.

4. Familiarity with Windows programming with the Win32 API is helpful, but
not required; we provide a Win32 primer in Appendix A.

REQUIRED DEVELOPMENT TOOLS AND HARDWARE

To program Direct3D 11 applications, you will need the DirectX 11 SDK; the
latest version can be downloaded from http://msdn.microsoft.com/en-us/directx/
default.aspx. Once downloaded, follow the instructions given by the installation
wizard. At the time of this writing, the latest SDK version is the June 2010 DirectX
SDK. All of our sample programs were written using Visual Studio 2010.

Direct3D 11 requires Direct3D 11 capable hardware. The demos in this book
were tested on a Geforce GTX 460.

USE OF THE D3DX LIBRARY

Since version 7.0, DirectX has shipped with the D3DX (Direct3D Extension) library.
This library provides a set of functions, classes, and interfaces that simplify common
3D graphics related operations, such as math operations, texture and image operations,
mesh operations, and shader operations (e.g., compiling and assembling). That is to
say, D3DX contains many features that would be a chore to implement on your own.

We use the D3DX library throughout this book because it allows us to focus on
more interesting material. For instance, we would rather not spend pages explaining
how to load various image formats (e.g., .bmp, .jpeg) into a Direct3D texture interface
when we can do it in a single call to the D3DX function p3px11createTextureFromFile.
In other words, D3DX makes us more productive and lets us focus more on actual
content rather than spending time reinventing the wheel.

Other reasons to use D3DX:

1. D3DX is general and can be used with a wide range of different types of 3D
applications.

2. D3DXis fast, at least as fast as general functionality can be.

3. Other developers use D3DX. Therefore, you will most likely encounter code

that uses D3DX. Consequently, whether you choose to use D3DX or not, you
should become familiar with it so that you can read code that uses it.

XXVII INTRODUCTION TO 3D GAME PROGRAMMING

4. D3DX already exists and has been thoroughly tested. Furthermore, it becomes
more improved and feature rich with each iteration of DirectX.

USING THE DIRECTX SDK DOCUMENTATION AND
SDK SAMPLES

Direct3D is a huge API and we cannot hope to cover all of its details in this one
book. Therefore, to obtain extended information it is imperative that you learn
how to use the DirectX SDK documentation. You can launch the C++ DirectX
online documentation by executing the windows_graphics.chm file in the DirectX
SDK\Documentation\DirectX9 directory, where DirectX SDK is the directory you
installed DirectX to. In particular, you will want to navigate to the Direct3D 11
section (see Figure 1).

The DirectX documentation covers just about every part of the DirectX
API; therefore it is very useful as a reference, but because the documentation
doesn’t go into much depth, or assumes some previous knowledge, it isn’t the
best learning tool. However, it does get better and better with every new DirectX
version released.

18 Windows DirectX Graphics
|Eile Edit View Go Help 2 \
H B 4+ & & © O o & & o

Hide Locate Previous Next Back . Stop Refresh Home Font Pmnt Options

| Programming Guidé for |

| 1 1
Contents |index | Search | Favorites |

| ; = {3 Windows DirectX Graphics Decumentation

= 3 Direct3D 11 Graphics 2 |
R — Direct3D 11 ;
| : : g:sz‘gon | The programming guide contains information about how to ‘

use the Direct3D 11 programmable pipeline to create I
realtime 3D graphics for games as well as scientific and
desktop applications.

+ @ Resources |

+ @ Graphics Pipeline |

+ @ Rendenng

+ @ Efiects | |
%] Migrating to Direct3D 71 Intrc

.
@ Graphics Reference | ®

+ @ Direct3D 10 Graphics |
@ Direct3D 9 Graphics | ®
« @ DXGi .
.
.

@ HLSL

+ @ Tools for DirectX Graphics

+ @ DirectX Graphics Articies

+ @ Direc2D [

Migrating to Direct3D 11

s @ DirectWrite ‘ Related Topics

l |
{ | Send comments sbout this topic to Microsoft
I | Build date: 5/28/2010

\
|
|
|
|
| Graphics Reference
|
|
|
|
‘ 1 | © 2010 Microsoft Carporation. All rights reserved
il

Figure 1. Direct3D Programming Guide in the DirectX documentation.

INTRODUCTION

XXIX

As said, the documentation is primarily useful as a reference. Suppose you come
acrossa DirectX related type or function, say the function 1p3p11pevice: : CreateBuffer,
for which you would like more information. You simply do a search in the
documentation index and you get a description of the object type, or in this case
function; see Figure 2.

“Now > [this book we may direct you to the documentation for further details from

time to time.

We would also like to point out the available Direct3D sample programs that
ship with DirectX SDK. The C++ Direct3D samples are located in the DirectX SDK\
Samples\C++\Direct3D10 and DirectX SDK\Samples\C++\Direct3D11 directories.
Each sample illustrates how to implement a particular effect in Direct3D. These

[_@ Windows DirectX Graphics
,Eﬂe Edit View Go Help

O 3|

Back

Contents Index %iealth Favorites |

‘ Type in the keyword to find

[CreateBufer method [Direct3D 11]

CreateBufier method [Direc0
evice interface

CreateClassinstance methad [
|| 103 lassLinkage imarface
CreateClassLinkage method [DirecD 1)

ID3011Device interface
CreateCompatibleRenderT arget methad [Direct2D)

ID20 RenderTargst interface |
CraateCompatibleRenderT arget overloaded mathod |
CreateComputeShader method {Dirsc3D 17] ‘

10301 1Device intedace
CreateCounter method [DirectdD 10]

ID3D10Device intedace [
CreateCounter method [Direct30 11]

1D3D710svice interface

CreateCryptoSession method {Dwect3D 9] ‘
IDirec13DDevicedVides interface

CreateCube Texture method [DirscD 8] ‘
IDirec3DDeviced interface

CreateCustomFomCallection method Direct Wnte]
IDWriteFactory interface

[DWriteFactory interface
CreateCustamRenderingParams method [Direct Wiite]
IDWrteFaclory iterface
CreateDataObject method [Diect3D 9]
iDirectXFileSavaObjectinterdace
CreateDCRenderTargst method [Direc2D)

CreateDefenedContext mathod [Direct3D 1)
D1iDevice interface
CreateDepthStencilState method [Direc3C 10|
ID3D10Device interface [

1D3D11Dsvice intarface
CreateDepthStencilSurface method [Direct3D 3]
iDirec3DDeviced interface |
CreateDepthStenciSurfaceEx method [Direct30 3] |
Direct3DDevicedSExinterface |
CraateDepthStencilView method [Direc3D 10)
iD3D10Davice interface
CreateDepthStencilView method [Direct3D 11)
ID3D110ewice nterface
CreateDevice method [Direct3D 9] |
DirectiD3 nterface |
CreateDeviceEx method Direct30 §]
IDirec3DIEX interface

i [in] const D3D11_BUFFER_DESC *pDesc, i
{in] const D3D11_ SUBRESOURCE_DATA *plInitialData, i
[fout] ID3D11Buffer **ppBuffer ﬁ
i e [
‘ |
|| | Parameters
pDesc [in]

CrealeCustomFontFileReference mathod [Direct Wate] J |

ID2D1Factory intertace (1

CreateDepthStenciiState method {Direct3D 11} I

=5 e

& O

Pont Qpbons

A
_Siop Refesh Home Foni

\ ID3D11Device::CreateBuffer
'Method

| Create a buffer (vertex buffer, index buffer, or shader-constant buffer).

‘ [Syntax

{! HRESULT CreateBuffer(

D3D11_BUFFER_DESC
Pointer to a buffer description (see D3D11_BUFFER_DESC). i
plnitialData [in]
D3D11_SUBRESOURCE_DATA |
Pointer to the Initialization data (see D3D11_SUBRESOURCE _DATA); use
i NULL to allocate space only (with the exception that It cannot be NULL if the i
usage flag Is D3D11_USAGE_IMMUTABLE).

ppBuffer {out]
1D3D11Buffer
il Address of a pointer to the buffer created (see ID3D11Buffer). Set this
parameter to NULL to validate the other input parameters (S_FALSE indicates
a pass).

Return Value
HRESULT
This method returns E_OUTOFMEMORY if there is insufficient memory to create the

buffer. See Direct3D 11 Return Codes for other possible return values.

Remarks

reate a Vertex Buffer, How to: Create an Index

| For example code, see How to
ant Buffer

i Buffer or How to: Create a Con

CreateDeviceObject method [Direct3D 10 Requirements

|
‘ stwavJ | Header D3D11h
‘ = = S <
Figure 2. Index of the DirectX documentation.

XXX INTRODUCTION TO 3D GAME PROGRAMMING

samples are fairly advanced for a beginning graphics programmer, but by the end of
this book you should be ready to study them. Examination of the samples is a good
“next step” after finishing this book. Note that we mentioned both the Direct3D 10
and Direct3D 11 samples. Direct3D 11 extends Direct3D 10 with new features, so
Direct3D 10 techniques still apply when making a Direct3D 11 application; hence,
it is still worthwhile to study the Direct3D 10 samples to see how a particular effect
can be implemented.

CLARITY

We want to emphasize that the program samples for this book were written
with clarity in mind and not performance. Thus, many of the samples may be
implemented inefficiently. Keep this in mind if you are using any of the sample code
in your own projects, as you may wish to rework it for better efficiency. Moreover,
in order to focus on the Direct3D API, we have built minimal infrastructure on
top of Direct3D. In a large 3D application, you will likely implement a rendering
engine on top of Direct3D; however, the topic of this book is the Direct3D API,
not rendering engine design.

SAMPLE PROGRAMS AND ONLINE SUPPLEMENTS

The companion DVD and Web sites for this book (www.d3dcoder.net and
www.merclearning.com) play an integral part in getting the most out of this book.
On the DVD and Web site you will find the complete source code and project
files for every sample in this book. In many cases, DirectX programs are too large
to fully embed in a textbook; therefore, we only embed relevant code fragments
based on the ideas being shown. It is highly reccommended that the reader study
the corresponding demo code to see the program in its entirety. (We have aimed
to make the demos small and focused for easy study.) As a general rule, the
reader should be able to implement a chapter’s demo(s) on his or her own after
reading the chapter and spending some time studying the demo code. In fact, a
good exercise is trying to implement the samples on your own using the book and
sample code as a reference.

In addition to sample programs, the website also contains a message board. We
encourage readers to communicate with each other and post questions on topics
they do not understand or on topics for which they need clarification. In many
cases, getting alternative perspectives and explanations to a concept speeds up
the time it takes to comprehend it. And lastly, additional program samples and

INTRODUCTION XXX1

tutorials are planned to be added to the web site on topics that we could not fit
into this book.

DEMO PROJECT SETUP IN VISUAL STUDIO 2010

The demos for this book can be opened simply by double-clicking the corresponding
project file (.vcxproj) or solution file (.sln). This section describes how to create and
build a project from scratch using the book’s demo application framework using
Visual Studio 2010 (VS10). As a working example, we will show how to recreate and
build the “Box” demo of Chapter 6.

It is assumed that the reader has already successfully downloaded and installed
the latest version of the DirectX SDK (available at http://msdn.microsoft.com/
directx/), which is needed to program DirectX applications. The installation of the
SDK is straightforward, and the installation wizard will walk you through it.

Create a Win32 Project

First, launch VS10, then go to the main menu and select File >New >Project, as
shown in Figure 3.

The New Project dialog box will appear (Figure 4). Select Visual C++ > Win32
from the Visual C++ Project Types tree control on the left. On the right, select
Win32 Project. Next, give the project a name and specify the location you wish to
checked by default. Now hit OK.

A new dialog box will appear. On the left, there are two options: Overview and
Application Settings. Select Application Settings, which produces the dialog box
shown in Figure 5. From here, be sure that Windows application is chosen, and
the Empty project box is checked. Now press the Finish button. At this point, you
have successfully created an empty Win32 project, but there are still some things
to do before you can build a DirectX project demo.

2 Start Page - Microsoft Visual Studio

File Edit View Debug Team Data Tools Test Window Help

New »] Project. Ctri+Shift+N |
Open * & WebSite Shift+Alt+N .
Close 43 Team Project.. i

) File.. Ctri=N S

Project From Existing Code...

Figure 3. Creating a new project.

XXXl

INTRODUCTION TO 3D GAME PROGRAMMING

New Project

Installed Templates

lisual C++
. ™ Win32 Consaie Application Visual C++ Type! Nisual C

VisualGe E A project for creating a Win32
L 0‘":3’ La_nguag.es 3 Win32 Project Visual G+ aDo‘hcat»Dn conscle appiicatian, DLL or
Visual Basic static library
4 Visual C~+
ATL
CLR
General
MFC
Test
Win32
Visual F#

m

Online Templates

Name: MyD3D11Project

Co;:;;gxt;agamozes“ 7 B . 1
Solution name: yD2011Project

Add to Source Control

Figure 4. New Project settings.

Win32 Application Wizard - MyD3D11Project L2

[=
e Application Settings

|
Qverview Application type: Add common header files for: ‘
Application Settings ‘W Windows application ‘
’ Console application |
DL

‘.1 Static library
} Additional options:
¥ Empty project

['< Previous ‘l Finish_ M Cancel

S v

Figure 5. Application settings.

INTRODUCTION XXXili

Linking the DirectX Libraries

We now need to link the DirectX libraries to our project. For a debug build, add
the additional libraries:

d3d1l.1lib;

d3dx11d.1ib;

D3DCompiler.lib;

Effectslld.lib;

dxerr.lib;

dxgi.lib;

dxguid.lib;

For a release build, add the same libraries above, but remove the ‘d’ character at
the end of d3dx11d.1ib and Effects11d.1ib, so that they are just d3dax11.1ib and
Effectsll.lib.

To link the library files, right-click on the project name under the Solution Explorer
and select Properties from the dropdown menu (Figure 6). This launches the dialog

Solution Explorer

RS
4 Solution MyD3D11Project’ (1 project

« T »a-D3D11Project

L) Build ixternal Dependencies
Rebuild deader Files
source Files
Clean fe.x.u _—e es
jource Files
Project Only »
Profile Guided Optimization »

Build Customizations,
Add ’
References..

f Class Wizard.. Ctri=Shift+X

54 View Class Diagram
Set as StartUp Project
Debug > i

5 Add Solution to Source Control.
& Cut Ctri=X
Project Project Properties
X Remove Dei i
Rename i MyD3D11Project
Unioad Project Dependencies
Rescan Saolution
. i amespace MyD3D11Project
_] . Open Foider in Windows Explorer 1

Properties Alt=Enter

Figure 6. Right-click on the project and select Properties from the context menu.

Comman Properties
« Configuration Propertie:
Generat
Debuggin
VC++ Directories
@ Linker
General

Command Line

Manifest Too!
XML Document Gene
B e Information

t

Configuration: | ActiveiDebug)

Ignore Specific Default Libraries

Module Definition File
Add Module 1o Assembly
Embed Managed Resource Fite

References

Force Symi
Detay Loaded Dils
Assembly Link Resource

Addfﬂonsl Dependende;

Specifies additional items to add to the link command line [i.e. kernel32.iib}

Figure 7. Link the DirectX libraries.

v Platfarm: | Active(Win32)

;

INTRODUCTION TO 3D GAME PROGRAMMING

v | Configuration Manager...

_ d3d11.lib;d3dx11d.lib;D3DCompiler.lib;Effects11d.lib;dxerr.lib;dxgi.lib;dx

e

Additional Dependencies

| k3a11in

d3axlldiio
D3DCompiteriin
Effectsiidiib
dxerr.iib

dxgiiib
dxguid.lib

Inherited values:

kernel32.iib
user32iin
gdi32 b
winspooilib
comdig32.iib
advapi32.fib
sheli32iib

+iinherit from parent or project defaults

Macros>>
I

] oK Cancel

oK . | | Cancel . | Apply

box shown in Figure 7. From the left-hand-side tree control, select Configuration
Properties > Linker >Input. Then on the right-hand-side, specify the library file
names on the Additional Dependencies line. Press Apply and then OK.

Setting up the Search Paths

We now need to make sure Visual Studio knows the directories in which to search
for DirectX header and library files. Again, right-click on the project name under
the Solution Explorer and select Properties from the dropdown menu (Figure
6). This launches the dialog box shown in Figure 7. From the left-hand-side tree
control, select Configuration Properties > VC++ Directories. Then on the right-
hand-side, you will need to add additional items for Executable Directories,
Include Directories, and Library Directories (Figure 8).

“Note: @ Keep in mind that the exact path for the DirectX SDK depends on where you
installed the DirectX SDK, and the exact path for the Common directory
depends on where you extract the sample programs. Furthermore, you are free
to move the Common directory, but you must remember to update the search
paths in Visual Studio accordingly.

