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Preface

Objective

This handbook aims at providing a broad survey of the field of graph drawing. It cov-
ers topological and geometric foundations, algorithms, software systems, and visualization

applications in business, education, science, and engineering.
The intended readership of this handbook includes:

e Practitioners and researchers in traditional and emerging disciplines of the phys-
ical, life, and social sciences interested in understanding and using graph drawing
methods and graph visualization systems in their field.

e Information technology practitioners and software developers aiming to incorpo-
rate graph drawing solutions into their products.

e Researchers and students in graph drawing and information visualization seeking
an up-to-date survey of the field.

e Researchers and students in related fields of mathematics and computer science
(including graph theory, computational geometry, information visualization, soft-
ware engineering, user interfaces, social networks, and data management) inter-
ested in using graph-drawing techniques in support of their research.

Organization

The chapters of this handbook are organized into four parts, as follows.

Topological and Geometric Foundations of Graph Drawing The first part
(Chapters 1-4) deals with fundamental topological and geometric concepts and
techniques used in graph drawing: planarity testing and embedding, crossings
and planarization, symmetric drawings, and proximity drawings.

Graph Drawing Algorithms The second part (Chapters 5-14) presents an exten-
sive collection of algorithms for constructing drawings of graphs. Some methods
are designed to draw special classes of graphs (e.g., trees, planar graphs, or
directed acyclic graphs) while other methods work for general graphs. Topics
covered in this part include tree drawing algorithms, planar straight-line drawing
algorithms, planar orthogonal and polyline drawing algorithms, spine and radial
drawings, circular drawing algorithms, rectangular drawing algorithms, simul-
taneous embeddings, force-directed methods, hierarchical drawing algorithms,
three-dimensional drawing algoritms, and labeling algorithms.

Graph Drawing Systems The third part begins by introducing the GraphML lan-
guage for representing graphs and their drawings (Chapter 16). Next, it overviews
three software systems for constructing drawings of graphs: OGDF, GDToolkit,
and PIGALE (Chapters 17-19).

Applications of Graph Drawing The fourth part (Chapters 20-26) gives examples
of the use of graph drawing methods for the visualization of networks in vari-
ous important application domains: biological networks, computer security, data
analytics, education, computer networks, and social networks.

Each chapter is intended to be self-contained and has its own bibliography.

xi
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Maurizio Patrignani Decomposition-Based Planarity
Roma Tre University References ... 34

1.1 Introduction

Testing the planarity of a graph and possibly drawing it without intersections is one of the
most fascinating and intriguing algorithmic problems of the graph drawing and graph theory
areas. Although the problem per se can be easily stated, and a complete characterization
of planar graphs has been known since 1930, the first linear-time solution to this problem
was found only in the 1970s.

Planar graphs play an important role both in the graph theory and in the graph drawing
areas. In fact, planar graphs have several interesting properties: for example, they are
sparse and 4-colorable, they allow a number of operations to be performed more efficiently
than for general graphs, and their inner structure can be described more succinctly and
elegantly (see Section 1.2.2). From the information visualization perspective, instead, as
edge crossings turn out to be the main reason for reducing readability, planar drawings of
graphs are considered clear and comprehensible.

In this chapter, we review a number of different algorithms from the literature for ef-
ficiently testing planarity and computing planar embeddings. Our main thesis is that all
known linear-time planarity algorithms fall into two categories: cycle based algorithms and
vertex addition algorithms. The first family of algorithms is based on the simple obser-
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2 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

vation that in a planar drawing of a graph any cycle necessarily partitions the graph into
the inside and outside portion, and this partition can be suitably used to split the em-
bedding problem. Vertex addition algorithms are based on the incremental construction of
the final planar drawing starting from planar drawings of smaller graphs. The fact that
some algorithms were based on the same paradigm was already envisaged by several re-
searchers [Tho99, HT08]. However, the evidence that all known algorithms boil down to
two simple approaches is a relatively new concept.

The chapter is organized as follows: Section 1.2 introduces basic definitions, properties,
and characterizations for planar graphs; Section 1.3 formally defines the planarity testing
and embedding problems; Section 1.4 follows a historic perspective to introduce the main
algorithms and a conventional classification for them. Some algorithmic techniques are
common to more than one algorithm and sometimes to all of them. These are collected
in Section 1.5. Finally, Sections 1.6 and 1.7 are devoted to the two approaches to the
planarity testing problem, namely, the “cycle based” and the “vertex addition” approaches,
respectively.

Algorithms for constructing planar drawings of graphs are discussed in Chapters 6 (straight-
line drawings), 7 (orthogonal and polyline drawings), and 10 (rectangular drawings). Meth-
ods for reducing crossings in nonplanar drawings of graphs are discussed in Chapter 2.

1.2 Properties and Characterizations of Planar Graphs

1.2.1 Basic Definitions

A graph G(V, E) is an ordered pair consisting of a finite set V' of wvertices and a finite set
E of edges, that is, pairs (u,v) of vertices. If each edge is an unordered (ordered) pair of
vertices, then the graph is undirected (directed). An edge (u,v) is a self-loop if u = v. A
graph G(V, E) is simple if E is not a multiple set and it does not contain self-loops. For the
purposes of this chapter, we can restrict us to simple graphs.

The sets of edges and vertices of G can be also denoted E(G) and V (G), respectively. If
edge (u,v) € E, vertices u and v are said to be adjacent and (u,v) is said to be incident
to u and v. Two edges are adjacent if they have a vertex in common.

A (rooted) tree T is a connected acyclic graph with one distinguished vertex, called the
root r. A spanning tree of a graph G is a tree T such that V(T') = V(G) and E(T') C E(G).

Given two graphs G1(V1, 1) and Ga2(Va, E»), their union Gy U G2 is the graph G(V; U
Vo, E1 U E5). Analogously, their intersection Gy N Gy is the graph G(Vi N Va, By N E3). A
graph G5 is a subgraph of Gy if Gy UGy = Gy.

Given a graph G(V, F) and a subset V'’ of V, the subgraph induced by V' is the graph
G'(V',E’), where E’ is the set of edges of E that have both endvertices in V’. Given a
graph G(V, E) and a subset E’ of E, the subgraph induced by E’ is the graph G'(V', E'),
where V' is the set of vertices incident to E'. A subdivision of an edge (u,v) consists of the
insertion of a new node w and the replacement of (u,v) with edges (u,w) and (w,v). A
graph Go is a subdivision of G if it can be obtained from G through a sequence of edge
subdivisions.

A drawing T of a graph G maps each vertex v to a distinct point ['(v) of the plane and
each edge (u,v) to a simple open Jordan curve I'(u,v) with endpoints I'(u) and I'(v). A
drawing is planar if no two distinct edges intersect except, possibly, at common endpoints.
A graph is planar if it admits a planar drawing. A planar drawing partitions the plane
into connected regions called faces. The unbounded face is usually called external face
or outer face. If all the vertices are incident to the outer face, the planar drawing is called
outerplanar and the graph admitting it is an outerplanar graph. Given a planar drawing,
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the (clockwise) circular order of the edges incident to each vertex is fixed. Two planar
drawings are equivalent if they determine the same circular orderings of the edges incident
to each vertex (sometimes called rotation scheme). A (planar) embedding is an equivalence
class of planar drawings and is described by the clockwise circular order of the edges incident
to each vertex. A graph together with one of its planar embedding is sometimes referred to
as a plane graph.

A path is a sequence of distinet vertices vy, va, ..., vk, with k > 2, together with the edges
(v1,v2),...,(vk—1,vk). The length of the path is the number of its edges.

A cycle is a sequence of distinct vertices vy, vo, ..., vk, with &k > 2, together with the
edges (v1,v2),. .., (Vk—1,Vk), (vg,v1). The length of a cycle is the number of its vertices or
the number of its edges.

An undirected graph G is connected if, for each pair of nodes u and v, G contains a path
from u to v. A graph G with at least k + 1 vertices is k-connected if removing any k — 1
vertices leaves G connected. Equivalently, by Menger’s theorem, a graph is k-connected
if there are k independent paths between each pair of vertices [Men27]. 3-connected, 2-
connected, and 1-connected graphs are also called triconnected, biconnected, and simply
connected graphs, respectively. It is usual in the planarity literature to relax the definition
of biconnected graph so to include bridges, i.e., graphs composed by a single edge between
two vertices. A separating k-set is a set of k vertices whose removal disconnects the graph.
Separating 1- and 2-sets are called cutvertices and separation pairs, respectively. Hence, a
connected graph is biconnected if it has no cutvertices and it is triconnected if it has no
separation pairs.

If a graph G is not connected, its maximal connected subgraphs are called the connected
components of G. If G is connected, its maximal biconnected subgraphs (including bridges)
are called the biconnected components, or blocks of G. Note that a cutvertex belongs to
several blocks and that a biconnected graph has only one block. The graph whose vertices
are the blocks and the cutvertices of G and whose edges link cutvertices to the blocks they
belong to is a tree and is called the block-cutvertex tree (or BC-tree) of G (see Figure 1.1
for an example).

Given a biconnected graph G, its triconnected components are obtained by a complex
splitting and merging process. The first linear-time algorithm to compute them was intro-
duced in [HT73], while an implementation of it is described in [GMO01]. The computation
has two phases: first, G is recursively split into its split components; second, some split
components are merged together to obtain triconnected components. The split operation
is performed with respect to a pair of vertices {v1,v2} of the biconnected (multi)graph G.
Suppose the edges of G are divided into the equivalence classes E1, Eo, ..., Ej such that two
edges are in the same class if both lie in a common path not containing a vertex in {vy,va}
except, possibly, as an end point. If there are at least two such classes, then {vy,vs} is a
split pair. Let G be the graph induced by E; and G2 be the graph induced by E/E;. A
split operation consists of replacing G with G| and G5, where G| and G}, are obtained from
G and G2 by adding the same virtual edge (vi,v2). The two copies of the virtual edge
added to G; and G are called twin virtual edges. Figure 1.2(b) shows the result of a split
operation performed on the graph of Figure 1.2(a) with respect to split pair {2,4}. The
split components of a graph G are obtained by recursively splitting G until no split pair can
be found in the obtained graphs. Figure 1.2(c¢) shows the split components of the graph of
Figure 1.2(a). Split components are not unique and, hence, are not suitable for describing
the structure of G.

Two split components sharing the same twin virtual edges (vi,v2) can be merged by
identifying the two copies of v; and vy and by removing the twin virtual edges. Split
components consisting of cycles are called series split components, while split components
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Figure 1.1 A connected graph (a) and its BC-tree (b). Different line styles are used for
edges of different blocks.

that have only two vertices are called parallel split components. By recursively merging
together series split components that share twin virtual edges we obtain series triconnected
components, while by recursively merging together parallel split components that share twin
virtual edges we obtain parallel triconnected components. Split components that are not
affected by the merging operations described above are called rigid triconnected components.
Figure 1.3(a) shows the triconnected components of the graph of Figure 1.2(a).

Triconnected components are unique and are used to describe the inner structure of a
graph. In fact, a graph G can be succinctly described by its SPQR-tree 7, which provides
a high-level view of the unique decomposition of the graph into its triconnected compo-
nents [DT96a, DT96b, GMO1]. Namely, each triconnected component corresponds to a
node of 7. The triconnected component corresponding to a node p of T is called the
skeleton of u. As there are parallel, series, and rigid triconnected components, their corre-
sponding tree nodes are called P-, S-; and R-nodes, respectively. Triconnected components
sharing a virtual edge are adjacent in 7. Usually, a fourth type of node, called Q-node,
is used to represent an edge (u,v) of G. Q-nodes are the leaves of T and they don’t have
skeletons. Tree T is unrooted, but for some applications, it could be thought as rooted at
an arbitrary Q-node. See Figure 1.3 for an example of SPQR-tree.

The connectivity properties of a graph have a strict relationship with its embedding
properties. Triconnected planar graphs (and triconnected planar components) have a single



