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The Black-Scholes Model

The Black—Scholes option pricing model is the first, and by far the best-known,
continuous-time mathematical model used in mathematical finance. Here, it provides a
sufficiently complex, yet tractable, testbed for exploring the basic methodology of
option pricing.

The discussion of extended markets, the careful attention paid to the requirements
for admissible trading strategies, the development of pricing formulae for many widely
traded instruments and the additional complications offered by multi-stock models will
appeal to a wide class of instructors. Students, practitioners and researchers alike will
benefit from the book’s rigorous, but unfussy, approach to technical issues. It highlights
potential pitfalls, gives clear motivation for results and techniques, and includes
carefully chosen examples and exercises, all of which makes it suitable for self-study.

MAREK CAPINSKI has published over 50 research papers and eleven books. His
diverse interests include mathematical finance, corporate finance and stochastic
hydrodynamics. For over 35 years he has been teaching these topics, mainly in Poland
and in the UK, where he has held visiting fellowships. He is currently Professor of
Applied Mathematics at AGH University of Science and Technology in Krakéw,
Poland, where he established a Master’s programme in mathematical finance.

EKKEHARD KOPP is Emeritus Professor of Mathematics at the University of Hull,
UK, where he taught courses at all levels in analysis, measure and probability,
stochastic processes and mathematical finance between 1970 and 2007. His editorial
experience includes service as founding member of the Springer Finance series
(1998-2008) and the Cambridge University Press AIMS Library Series. He has taught
in the UK, Canada and South Africa, and he has authored more than 50 research
publications and five books.



Mastering Mathematical Finance

Mastering Mathematical Finance is a series of short books that cover all
core topics and the most common electives offered in Master’s programmes
in mathematical or quantitative finance. The books are closely coordinated
and largely self-contained, and can be used efficiently in combination but
also individually.

The MMF books start financially from scratch and mathematically assume
only undergraduate calculus, linear algebra and elementary probability the-
ory. The necessary mathematics is developed rigorously, with emphasis on
a natural development of mathematical ideas and financial intuition, and the
readers quickly see real-life financial applications, both for motivation and
as the ultimate end for the theory. All books are written for both teaching
and self-study, with worked examples, exercises and solutions.
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Preface

The development of modern financial markets can be traced back to two
events in the USA in 1973, both of which revolutionised market practice,
for very different reasons. One of these revolutions was essentially institu-
tional: the opening of the world’s first options exchange in Chicago allowed
options to be exchanged in much the same way as stocks (that is, through
a regulated exchange) rather than having to be traded ‘over the counter’
as separate contracts between buyer and seller. The second upheaval was
purely theoretical: the publication in the Journal of Political Economy of
the now famous paper by Fischer Black and Myron Scholes (extended by
Robert Merton in the same year), which developed arbitrage techniques
for pricing and hedging options, and presented the now ubiquitous Black—
Scholes formula for the rational pricing of European call options.

By the late 1970s the basis of their arguments, and the link with mar-
tingale theory in particular, had become well enough understood to allow
the rapid development of this theoretical breakthrough, which has, since
the 1980s, pre-occupied a host of financial economists and mathematicians
(principally probabilists) and has given rise to the new profession of quan-
titative analyst (or ‘quant’), which has attracted into the finance sector a
large section of the best graduates with mathematics, physics, statistics or
computer science degrees. This, in turn, has spawned a host of postgradu-
ate courses emphasising market practice and taught in business schools, but
increasingly also courses attached to mathematical sciences departments,
focusing on the underlying mathematics, much of which is of compara-
tively recent origin.

At the same time, finance practitioners have led the explosive, largely
unregulated, growth of new financial instruments, grouped together un-
der the term ‘derivative securities’, which are constantly being devised to
meet (or create) demand for specific tailor-made financial products in the
banking, currency, insurance, energy and mortgage markets. Hedge funds,
which specialise in trading these highly leveraged products, involving huge
sums, have become major players in most developed economies. While the
mathematical theory underlying their activities is based firmly on market
models that exclude arbitrage opportunities (colloquially, a ‘free lunch’),
in practice much of the motivation comes from the search for risk-free
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viii Preface

profits, or, perhaps more accurately, the exploitation of market imperfec-
tions which briefly create highly marginal profits available through rapid,
large-scale trading. This leads to secondary markets whose size overshad-
ows global primary trade — by 2007 the annual volume of derivative trades
had reached one quadrillion (10'%) US dollars, ten times the global in-
dustrial output over the past century — and where incautious, sometimes
politically driven, decisions can leave banking institutions exposed to colos-
sal losses, as was demonstrated painfully by the global banking crises of
20089 that continue to haunt the global economy.

All this suggests that a more thorough understanding of the principles
underlying market practice is essential both for the improvement of that
practice and for its regulation. Like nuclear power or the combustion en-
gine, modern financial markets cannot be un-invented; instead, clear insight
into their purpose, workings and potential benefits, which necessarily in-
volves mastery of their mathematical basis, is a pre-requisite for adjusting
market practice and preventing its abuse.

We will focus attention on the development of the Black—Scholes pricing
model and its ramifications. Unlike its much simpler discrete-time bino-
mial counterpart, the Cox—Ross—Rubinstein model (see [DMFM)]), a proper
understanding of this model requires substantial mathematical tools, princi-
pally from the stochastic calculus, which are developed carefully in [SCF].
The random dynamics of stock prices in the Black—Scholes model are
based upon the Wiener process (often called Brownian motion). Despite
its greater mathematical complexity, the continuous-time model produces a
unique pricing formula for vanilla European options which is simpler than
its discrete-time counterpart (the CRR formula described in [DMFM]), and
has been universally adopted as a standard tool by finance practitioners.

Chapters 1-3 present the basic single-stock model for a general Euro-
pean derivative, with a focus on the explicit formulae for pricing calls and
puts, and give a careful account of restrictions on admissible trading strate-
gies. Since arbitrage opportunities usually involve trading in derivatives,
the assets held in such strategies should include holdings in the derivatives
being priced, and we show that, in our model, the prices of derivative and
the replicating strategy must coincide if arbitrage is to be avoided. Option
prices are derived in detail for vanilla European options and the unique
admissible replicating strategy is constructed and related to the Black—
Scholes PDE and to sensitivity measures for the option price relative to
its parameters. The key roles of the risk-neutral probability and the repre-
sentation of martingales by stochastic integrals are highlighted.
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Chapter 4 extends and applies the Black—Scholes model in a variety of
settings: options on foreign currencies, on futures and on other options. A
structural model of credit risk is shown to fit the option pricing setting,
a pricing model with time-dependent parameters is introduced, American
call options are considered briefly, and the chapter closes with a description
of the growth-optimal portfolio. Chapter 5 extends the discussion to the
more exotic barriers, lookbacks and Asian options. A two-asset Black—
Scholes model is first considered in Chapter 6 before presenting a general
multi-asset pricing model, requiring more general versions of the Lévy and
Girsanov theorems.

We restrict ourselves to the Black—Scholes setting and its immediate
generalisations throughout this volume, working with the natural filtration
of a given Wiener process and keeping our reliance on general martingale
theory to a minimum. Notable features include the justification of deriva-
tive prices by means of replicating strategies and the care taken at the out-
set in defining the class of admissible trading strategies. The emphasis is
on honest proofs of the results we discuss, with much attention given to
specific examples and calculation of pricing formulae for different types
of options. As usual, the many exercises, whose solutions are made avail-
able on the linked website www.cambridge.org/9781107001695, form an
integral part of the development of the theory and applications.

We wish to thank all who have read the drafts and provided us with
feedback.
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Introduction

1.1  Asset dynamics
1.2  Methods of option pricing

In the Black—Scholes option pricing model the stock price dynamics are
assumed to follow an Itd process with constant characteristics. This key
hypothesis, dating from a 1965 paper by Paul Samuelson, adapts ideas from
a remarkable doctoral thesis by the French mathematician Louis Bachelier
in 1900. The model makes various simplifying assumptions about the mar-
ket, not all of which are borne out by market data. Nonetheless, the Black—
Scholes prices of European derivatives provide benchmarks against which
prices quoted in the market can be judged.

We turn first to a description of the continuous-time price processes for
the assets that comprise the basic single-stock Black—Scholes model.

1.1 Asset dynamics

The market model contains two underlying securities.
o The risk-free asset (money-market account), described by a determinis-
tic function

dA(t) = rA(tdt,
with A(0) = 1 (for convenience), where r > 0 is the risk-free rate.
This is an ordinary differential equation A’(¢) = rA(¢) but for consistency

with stock prices, which are assumed to be Itd processes, we use differential
notation. The equation has a unique solution:

A(t) = e".



2 Introduction

e The risky asset, thought of as a stock, is represented by an It6 process
of the form

dsS (t) = uS (Hdt + oS (1)dW(t), (1.1)

with S (0) given, where we call 1 € R the drift, and o > 0 the volatility,
of the stock price S.

The sign of o is actually irrelevant. If o is negative then we change
W to —W and we have an equation with positive o~ but with respect to
(—W), which is again a Wiener process. The probability space underlying
W will be denoted by (2, F, P), and the associated filtration is given by
FS = o (S(u) : u < t}). Writing out (1.1) we see that

S(t)=S(0)+pfS(u)du+a’f S (u)dW (u).
0 0

The stochastic differential equation (1.1) has a unique solution since the
coefficients are Lipschitz with linear growth:

uS () =a,S(@), at, x)=px,
aS (D) =bt, @), | bit,x) = cx;

so that

la(z, x) — a(t, y)| < |ullx = yl,
|b(t, x) — b(t, y)| < olx -y,

linear growth being obvious, and we can apply the existence and unique-
ness theorem for stochastic differential equations, proved in [SCF] as
Theorem 5.8.

We can determine the solution immediately: it takes the form

2
S(r) = S(0) expiut — %r +oW()). (1.2)

Exercise 1.1 Show that this process solves (1.1).

As the solution is unique, S given by (1.2) is the unique solution of (1.1).
Note that the filtration #° governing the random fluctuations in the stock
price S coincides with the natural filtration of W, where ¥, = o(W(u) :
u < t) for each t € [0, T], since (1.2) shows that W is the only source of
randomness in S.
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Exercise 1.2 Find the probability that S (2r) > 25 (¢) for some 7 > 0.

Model parameters

To understand the role of the parameters y, o in this model we compute the
expectation of S (¢). Recall that for a normally distributed random variable
X with E(X) = 0 we have

E(exp(X}) = exp(3 Var(X)} (1.3)

We apply this with X = o W(#), so that Var(X) = ot (we write the expec-
tation of X with respect to P simply as E(X) rather than Ep(X) when there
is no danger of confusion):

E(S (1) = S (0)E( expfut — %Uzt + oW

= §(0) exp{ur — %Uzt}E( exploW()})
= 5(0) exp{uz}.

Clearly, if 4 = O then the expectation of S (¢) is constant in time.
The expression for E(S (¢)) gives u as the (annualised) logarithmic return
of the expected price

1, BS®)

t S) ’
which should not be confused with the expected (annualised) logarithmic
return

(1.4)

S () 1 a o2
—El————IE t— Tt+ oW e
( 5 (0)) ; (u Y A (D) =u >

The variance of the return is

.
Var(ut — %t + o W()) = Var(cW(r)) (adding a constant has no impact)

= ot (since Var(W(7)) = 1).

A natural question emerges of how to find these parameters given some
past stock prices. The formula (1.4) suggests taking average prices as the
proxy for the expected price, but the accuracy of this is poor, according to
statistical theory.
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Much more effective is the approximation of volatility provided, for in-
stance, by the following scheme. Consider the process

InS() =1nS0)+ (u— %ol)t +oW(@),

which is an Itd process with constant characteristics. Its quadratic variation
is equal to ot (see [SCF]) and for a partition of [0,7] given by 0 = #; <
-+«- < t, = t, with small mesh max |, — |, we have

Z(ln S(te1) — In S (1)) ~ ot

k

Hence if the times #;, represent past instants at which we know the prices,

then we can take
1 S (tes1)
= 4|- 1
v \f : 2 In )

as our estimate of the volatility coefficient, a positive number called the
sample volatility.

Exercise 1.3 Find the formula for the variance of the stock price:
Var(S (1)).

Exercise 1.4 Consider an alternative model where the stock prices
follow an Ornstein—Uhlenbeck process: this is a solution of dS () =
w1 S 1(0)dt + o1dW(t) (see [SCF]). Find the probability that at a certain
time t; > 0 we will have negative prices: i.e. compute P(S(#;) < 0).
Illustrate the result numerically.

Exercise 1.5 Allowing time-dependent but deterministic o in
the Ornstein—Uhlenbeck model, find its shape so that Var(S(¢)) =
Var(S (7))
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Exercise 1.6 Let L be a random variable representing the loss on
some business activity. Value at Risk at confidence level a is defined
as v = inf{x : P(L < x) > a}. Compute v for a = 95%, where L
is the loss on the investment in a single share of stock purchased at
S(0) = 100 and sold at S(T') with ¢ = 10%, o = 40%, T = 1.

1.2 Methods of option pricing

We consider a possible line of attack for pricing options in the Black—
Scholes market. To make progress we impose various assumptions, and in
doing so we survey the range of tasks required to solve the option pricing
problem.

Recall that a European derivative security is a contract where the seller
promises the buyer a random payment H at some prescribed future time
T, called the exercise time. In our pricing model H is a random variable
defined on a probability space (Q,F, P) supporting the Wiener process
W, equipped with its natural filtration (%,")cf0.r7, and we may assume in
addition that 7, = #. The natural filtration of W coincides with the
filtration generated by the Itd process S = (S (#))wjo,r; described above.
We call S the underlying security — with S as defined above, (F;* )07
is simply the natural filtration of W. This measurability is the only link
between H and the underlying. If H = h(S (7)) for some Borel function
h, the derivative security is path-independent and it of course satisfies the
measurability condition, but not the other way round, since the o-field Fr
is generated by the entire price process, not simply by S(7'). A familiar
path-independent security is the European call option with strike K, where
h(x) = (x — K)* = max{0, x — K}, so that the option payoff at expiry is
H=(S(T)-K)".

Such a security is sold at time 0 and the first task we tackle is to find its
price at that time — this is known as the option premium.

Risk-neutral probability approach

In the finite discrete-time setting discussed in [DMFM] the key assump-
tion was the absence of arbitrage. This economic hypothesis was given
mathematical form by the first fundamental theorem of asset pricing, which
showed that the No Arbitrage Principle was equivalent to the existence of
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a measure Q, with the same null sets as P, under which the discounted
price process is a martingale. This result, together with the fact that the
transform (or ‘discrete stochastic integral”) of a martingale is again a mar-
tingale, allowed us to identify the value process of a path-independent
European derivative with that of a ‘replicating’ trading strategy involving
only stocks and the money market account.

In continuous-time models the analogue of the first fundamental theorem
is rather sophisticated and we shall not pursue it directly, but will instead
reformulate the No Arbitrage Principle in more detail later. For our present
purposes we state three assumptions that suffice to explain the approach to
pricing that will enable us to derive the Black—Scholes formula and related
results. This section is intended simply to give the flavour of the arguments
that will be deployed.

Assumption 1.1

There exists a pair (x,y) of processes, adapted to the filtration (%;°)cf0.7),
producing portfolios consisting of holdings in the stock and the money
market account, with values

V(1) = x()S (1) + y(DA(r)
assumed to match the option payoff at maturity
Vil )=
and therefore (x,y) is called a replicating strategy.

The condition we impose on the trading strategies employed is a nat-
ural continuous time analogue of the self-financing condition demanded
of discrete time models, capturing the idea that changes in the values and
holdings of assets are the sole drivers of changes of wealth, allowing no
inflows or outflows of funds.

Assumption 1.2
There exists a replicating strategy satisfying the self-financing condition:

dV(t) = x()dS (t) + y(t)dA(r).

In the binomial model the construction of a risk-neutral probability was
straightforward, in continuous time it will be quite involved and for the
time being we impose it as follows.
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Assumption 1.3

There exists a probability Q, with the same null sets as P, such that S@) =
e "S(¢) and V() = e""V(t) are martingales with respect to Q and the fil-
tration (%5 )ejo.7y-

A martingale has constant expectation so in particular V(0) = ]EQ(V(T ),
hence

V(0) = Ex(e™ " H),

which, as we show in Theorem 2.16, must be H(0), the initial price of
the derivative with payoff H, since in the case of inequality an arbitrage
opportunity emerges: buy the cheap asset and sell the expensive one, invest
the profit risk-free, so a riskless profit is maintained at maturity, due to
replication, with some care needed to meet some admissibility conditions
(the details can be found in Chapter 2).

The PDE approach

To develop an alternative pricing method, the replication condition is for-
mulated in a stronger version: in addition to matching at maturity we as-
sume that the entire process of option prices H(#) is indistinguishable from
the value process of the strategy. (Again, this is easily obtained in the
discrete-time setting — see Theorem 4.40 in [DMFM].) We make two fur-
ther assumptions.

Assumption 1.4
There is a self-financing strategy (x,y) such that the option value process
can be written in the form

H(1) = x(D)S (1) + y(DAQ@).

The spirit of the next condition is that there exists a closed form formula
for the option price, though we do not yet know its shape. An additional
feature is that the price does not depend on the history of stock prices (at
this point the reader should recall the Markov property discussed in [SCF]).
This is only applicable to path-independent derivatives.

Assumption 1.5
The process H(t) is of the form

H(1) = u(1,S (1)),

where the deterministic function u(z, z) has continuous first derivative with
respect to ¢ € [0, T'] and continuous first and second derivatives in z € R.



