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Introduction v

Introduction

About thirty years ago, David Park wrote a book on Quantum Theory in
which he advised the student to determine whether the difficulty in solving a
problem was in the Physics or in the Mathematics. With the great amount of
progress in numerical methods and with the speed of the modern personal
computer, the problem is no longer in the mathematics. Now it is sufficient to
set up the correct Physics equations and utilize any of the excellent
mathematical softwares to graph and solve the problem.

The computer solutions in this book are primarily written in Mathematica
because of its reasonably straightforward approach to mathematical
problem-solving. It should be noted that the computational powers of Maple
and MatLab are equally good. A comparison of Mathematica, Maple, and
MatlLab is given in Appendix A.

The programming with Mathematica 5 should present few difficulties.
There are 50-plus computer solutions from physics and engineering and 10-plus
animations contained on the compact disc. Any of these can be downloaded to
your computer and run with Mathematica S or Mathematica 6. Once a program
from the CD is on your computer, you may change the conditions or modify the
equations to address a problem of your choosing. A listing of all programs is
given in Appendix B. If you have never used Mathematica before, a capsule
summary of Mathematica commands is given in Appendix C.

It is important to note that this is not a first-year textbook on Physics.
Anyone who wants to program Physics equations should have at least one year
of College Physics and a good introduction to the Calculus.

Here is the premise of this text: If you can write down the correct Physics
equations, then it is only necessary to program a few lines of code to get the
answer. And if the Physics equations are not correct, then the program output
will tell you that as well. Either way, you win. Let's get started by setting up
some Physics equations ... and let the computer knock them down.
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Chapter 1 Equations of Motion 3

1.0 Newton's Laws

Some 320 years ago, Isaac Newton wrote down the two basic equations
of classical Physics
dv

the basic equation of force F=m-go =mv
and the force of gravity mi = — %

Let us begin with motion of a planet in a gravity field. We'll use the
metric system to describe the motion of the Earth about the Sun.

Cancellingm, t=- %’I where M =M., = 1.989 x 1030 kg
and G=6.673 x 107"

Notice that if we wish to measure distance in km and time in hours,
then we need only change the units of G

G = 6673 x 107" I = 6673 x 10720 km_

36002 x 6.673 x 10720 _km™

kg- (hr)”

G

G is exactly the same. Only the units are changed. Choose the G you
need, and express your distance units in m or km and your time in s or hr,
but be consistent throughout your equation.

Now, back to the Earth. If we place the Earth at its average distance
r = 149.6 x 10° km away from the Sun, in a circular orbit with velocity v,

mv? _ mGM

r r2

v = «/GTM = 29.786 km/s

Let's now write the physics equations for circular motion of the Earth

about the Sun. To begin, we'll use x-y coordinates.
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_ GM _ GM _ 6 .
X =-%y Cos = — IX:-yi Xo=149.6 x 10 km %,=0
v = — _GM 51 — __GMy = 7 =2 g
v %+ Y2 Sin 0 ey Vs = 0 v, =29.786 km/s

These two equations describe the motion of the Earth for all time, based
on the initial conditions. Let's look at the requirements for finding the speed
and location of the Earth at all times after t = 0. First of all these two
equations are complicated and they are not linear. We shall find a solution
by using numerical methods (NDSolve in Mathematica). We will solve
from £ =0 to t=9000 hours.

Here 1s how we do it. To get the time in hours, and the distance from the
sun in kilometers, take

G= 36002 x 6.673 x 1072 % and M.y, = 1.989 x 103 kg
g- (hr)

Then the x- and y- distance of the Earth from the center of the Sun will
be measured in kilometers. Notice that to be consistent we will also have to
convert the initial velocity into kilometers per hour.

Here is the Mathematica program

;= G = 3600°%6.673%1072%; M=1.989%10%";
sol = NDSolve[ {
x''[t] =G*xMx (-x[t]) / (x[t] "2+y[t] "2) " 1.5,
y'U[t] =G+M=* (-y[t]) / (x[t] "2+y[t] "2) " 1.5,
x[0] ==149.6%10"6, y[0] =0, x'[0] ==0, y'[0] ==29.786 %3600},
{x, v}, {t, 0, 9000}]

When we press Shift-Enter. the Mathematica program returns

Out [1]= {{x —» InterpolatingFunction[{{0., 9000.}},
{ } ]

{ <>,
y — InterpolatingFunction|{{0., 9000. <>]})
x and vy are given by an Interpolating Function. We can plot x vs v if we
first identify an interpolation function in x, and an interpolation function in

v and table these values versus time.

InterpFuncl =x /. sol[[1]]; InterpFunc2=y /. sol[[1]];
InterpFunc3 =x' /. sol[[1]]; InterpFunc4 =y’ /. sol[[1]];
tbl = Table[{InterpFuncl[t], InterpFunc2[t]}, {t, 0, 8600, 200}];
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Now we are free to plot a series of (x, y) points versus time. Either as a
series of dots (ListPlot) or as a continuous line (ParametricPlot).

ListPlot[tbl, AspectRatio - Automatic, Prolog - AbsolutePointSize[3]]
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. ~1x 10° y
° L ]
. L ]
° L]

~1.8x 0%

ParametricPlot[{x[t], y[t]} /. sol, {t, 0, 7400}, AspectRatio - Automatic]

— N - N TE—

~1.5k 10%1x 10%-5x 10’

5x 107 1x 10%.5x 10°

=1 .5%

A Parametric Plot of the Earth in a circular orbit.
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Let us now Table the data from the Interpolation Functions.

In[191]:= xr[t ] = \/InterpFuncl[t] %2 + InterpFunc2[t] "2 ;

vt 1= ‘\/InterpFunc3[t] 2 + InterpFunc4[t] "2 /3600;
Table[{t, InterpFuncl[t], InterpFunc2([t], r[t], v[t]},
{t, 0, 8800, 400}] // TableForm

t (hr) x (km) y (km) r (km) v (km/ s)
0 1.496x10° ~-1.43599x 102} 1.496x10° 29.786
400 1.43493x10° 4.23066x107 1.496 %108 29.786
800 1.25672x10° 8.11593x10" 1.496 x10°8 29.786
1200 9.75899x 107 1.13386x10° 1.496x10°8 29.786
1600 6.15408 x 10”7 1.36356x10° 1.496x10° 29.786
2000 2.04676 x 107 1.48193 x10° 1.496x10°8 29.786
2400 ~-2.22767x 107 1.47932x10°8 1.496x 108 29.786
2800 -6.32023x107 1.35594 x 108 1.496x10° 29.786
3200 ~9.8968x 107 1.12185x 108 1.496x108 29.786
3600 ~1.26654 x10° 7.96178 %107 1.496x 108 29.786
4000 -1.43999x10° 4.05503x 107 1.496x10°8 29.786
4400 ~1.49589x10° ~1.82776 x 10° 1.496x10° 29.786
4800 ~1.42966x10° -4.40566 x 107 1.496x108 29.786
5200 ~1.24671x10°% -8.26886 x 10 1.496 x10°8 29.786
5600 ~-9.61974x107 ~-1.1457 x 10°® 1.496 x10°8 29.786
6000 ~5.98704x 10" -1.37097x10° 1.496x10°8 29.786
6400 ~1.86556x 10 -1.48432x10° 1.496 x10°8 29.786
6800 2.40823x 10’ ~-1.47649x10° 1.496 x10°8 29.786
7200 6.48541x107 -1.34811x10° 1.496 x10°8 29.786
7600 1.00331x10° ~1.10968 x10° 1.496 x10° 29.786
8000 1.27617x 108 -7.80645x10" 1.496x10°8 29.786
8400 1.44484x10° -3.8788x 107 1.496 x10° 29.786
8800 1.49555x 10° 3.65522x10° 1.496x10°8 29.786

The above Table shows the Earth in a circular orbit about the Sun.
For our choice of starting conditions, r and v remain constant.



Chapter 1 Equations of Motion

Just how accurate 1s Mathematica? Notice that in the above Table that
we have solved the Differential Equations for a time of one year, and, as
expected, the radius of the orbit and the velocity have remained absolutely
constant. This is a first test of the Mathematica numerical solver, and it is
gratifying to see that the LSODA algorithm in NDSolve produces good,
consistent results. (The Livermore Solver for Ordinary Differential equa-
tions Adaptive method was developed at Lawrence Livermore Labs and
utilizes both an Adams method and a Gear backward differences method to
obtain results of high accuracy.)

In terms of precision, Mathematica routinely carries at least 16 places of
decimal accuracy. This is far more than what we will need in this text, where
we shall report the results of computations to 6 places (1 part per million
accuracy) except in those few cases where greater precision is required.

To this point, we have only modeled the Earth as traveling in a circular
orbit at one Astronomical Unit (its average distance of 149.6 million kilome-
ters) from the center of the sun. What is necessary next, is to use the com-
puter to find all the parameters of the Earth's elliptical orbit about the sun,
using only Newton's Law of Gravity, and a starting distance and velocity for
the Earth.

~
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1.1 Motion of the Planets about the Sun

Let's program the actual motion of the Earth about the sun. Astronomers
tell us that the Earth is closest to the sun every January 3, at a distance of
147.1 x 10° km from the center of the sun, and the velocity of the Earth at
that time i1s 30.288 km/s. Let us program in these two numbers as initial
conditions. and see if we can find the complete orbit of the Earth about the
sun.

From the plot, the orbit appears circular. However, if we Table the
numbers, we see that the Earth actually slows down a small amount, and
moves outward from the sun by a small amount, and halfway through the
orbit, speeds up again, as it comes in closer to the sun. The orbit is an
ellipse.

We have programmed in a starting velocity a little greater than that
required for circular orbit. Therefore our starting point is the perihelion and
the point of furthest excursion is the aphelion. What is worth noting is that
we only specified the location and velocity of the Earth at ONE POINT.

And this. with Newton's Law of Gravity, is all you need to describe the
motion of any planet or comet about the sun, or any satellite about a planet.

Now, the correct equations of motion for the Earth about the sun are

% = - M _Cosg= - —SMx__ Xo=147.1x10°km  %,=0
Xe+y X2+ y2

o GM 5 _ GM y _ @ .

Y = - ;jﬁsmﬁ =T ey Yo=0 Vo = 30.288 km/s

G = 3600%°%6.673%107%%; M=1.989x10%7;
soll = NDSolve[
{x'"'"[t] =G*Mx* (-x[t]) / (x[t] "2+y[t] "2) 1.5,
y''[t] =GxMx (-y[t]) / (x[t] "2+y[t]"2)"1.5, x[0] ==147.1%10"6,
y[0] =0, x'[0] =0, y'[0] ==30.288%3600}, {x, vy}, {t, 0, 9000}]

InterpFuncl=x /. soll[[1]]; InterpFunc2=y /. soll[[1]];
tbl = Table[{InterpFuncl[t], InterpFunc2[t]}, {t, 0, 5000, 200}];
ListPlot[tbl, AspectRatio - Automatic, Prolog - AbsolutePointSize[3]]
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The orbit of the Earth, from January to July.

ParametricPlot[{x[t], y[t]} /. soll[[1]],
{t, 0, 5000}, AspectRatio » Automatic];

~1.8x10%1x 10® 5% 10”7 5x 107 1x10%°1.5x10°

_5x 10’}

The orbit of the Earth about the sun (at 0, 0). Although the orbit appears
circular, the following Table shows that it is an ellipse.
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In[210] := InterpFunc3 =x'/.soll[[1]]; InterpFunc4=y"' /. soll[[1]];
rit 1= VInterpFuncl[t] *2 + InterpFunc2[t] "2
Vel[t ] := VInterpFunc3[t] "2+ InterpFunc4[t] "2 /3600
Table[{t, InterpFuncl[t], Chop[InterpFunc2[t]],
r(t], Vvel[t]}, {t, 0, 8800, 400}] // TableForm
t (hr) x (km) y (km) r (km) v (km/ s)
0 1.471x108 0 1.471x10° 30.288
400 1.40788x10° 4.29893x10’ 1.47205x10°® 30.2666
800 1.2242x108 8.22999x 10’ 1.47512x10° 30.2046
1200 9.36301x10’ 1.1461x10° 1.47994x10° 30.1076
1600 5.69426 x 107 1.37264x10° 1.48607 x10° 29.9844
2000 1.55064x107 1.48492x10° 1.49299x10° 29.846
2400 -2.72117x 107 1.47524x10° 1.50013x 108 29.7039
2800 -6.77342x 107 1.34609x10° 1.5069x10° 29.5697
3200 -1.02851x10° 1.10935x10° 1.51277x 108 29.4539
3600 -1.29847x108 7.84934 %107 1.51728x 108 29.3652
4000 -1.46679x10° 3.99028x 10’ 1.5201x10° 29.31
4400 -1.52089x10° ~1.79697x10° 1.521x10° 29.2923
4800 -1.45678x10° -4.3357x107 1.51993x10° 29.3133
5200 -1.27919x 108 -8.15376x10’ 1.51696 x 108 29.3715
5600 ~-1.00141x10°® ~-1.13326x10° 1.51232x 108 29.4628
6000 -6.44497 x 107 -1.36152x10° 1.50635x10° 29.5806
6400 -2.36095x 107 -1.48083x10° 1.49953x10° 29.7158
6800 1.91367x 107 -1.48007x10° 1.49239x10° 29.8581
7200 6.03011x 107 -1.35761x10° 1.48551x10° 29.9957
7600 9.64315x 10 -1.12202x108 1.47947x 108 30.117
8000 1.24421x108 ~-7.91801x10’ 1.47479x 108 30.2113
8400 1.41812x10° -3.94194x107 1.47188x10° 30.2701
8800 1.47054 x10° 3.71581x10° 1.47101x 108 30.2878

The above Table shows the motion of the Earth in its elliptical orbit
about the sun. Notice that the maximum distance r (aphelion) is near t =
4400 hours, and the minimum distance (perihelion) at t = 0, and again at
t = 8800 hours.



