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PREFACE

My goal in writing this book was to create a companion volume to “Elliptic Par-
tial Differential Equations of Second Order” by David Gilbarg and Neil S. Trudinger.
Like that book, this one is an essentially self-contained exposition of the theory of
second order parabolic (instead of elliptic) partial differential equations of second
order, with emphasis on the theory of certain initial-boundary value problems in
bounded space-time domains. In addition to the Cauchy-Dirichlet problem, which
is the parabolic analog of the Dirichlet problem, I also study oblique derivative
problems. Preparatory material on such topics as functional analysis and harmonic
analysis is included to make the book accessible to a large audience. (Dave and
Neil, I hope I succeeded.)

This book would not be possible withour the help of many people. First and fore-
most are David Gilbarg, my Ph.D. advisor, who started me on the road to a priori
estimates; Neil Trudinger, whose continued encouragment, collaboration, and invi-
tations to the Centre for Mathematics-and its Applications (in fact, several chapters
of this book were written at the C. M. A.) kept me going; and Howard Levine, who
showed me the glory of parabolic equations. Next, but just as important, are my
family: my parents, Alvin and Tillie Lieberman, without whom I would not have
been possible; and my wife, Linda Lewis Lieberman, and my step-children, Ben
and Jenny Lewis, who joined me during the writing of this book. Without Linda,
Ben, and Jenny, the project may have been completely more quickly, but definitely
not more pleasantly. Without Olga Ladyzhenskaya and Nina Ural’tseva, the whole
field of a priori estimates would be much smaller; I thank them for their pioneering
work, continued advances, and constant inspiration. I also thank CLff Bergman,
Jan Nyhus, Ruth deBoer, and Mike Fletcher for their invaluable assistance with
and education on ApS-TEX and TEX. Russell Brown and Wei Hu were my col-
laborators on the material in Section 6.1, and it was their prodding that led to a
useful version of the results therein.

I also thank my editors at World Scientific over the years: J. G. Xu, Lam Poh
Fong, and Chow Mun Zing.

There were many others who provided encouragement and advice. In particular,
Suncica Canic, Emmanuele DiBenedetto, Nicola Garofalo, Nina Ivochkina, Nikolai
Krylov, Paul Sacks, Mikhail Safonov, and Michael Smiley deserve special mention.
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My final thanks are to all those people who gave me advice through the years and
who shared their work with me.

July, 1996
Ames, Iowa USA
Gary M. Lieberman
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CHAPTER I

INTRODUCTION

1. Outline of this book

In Chapter 2, we prove maximum principles for general, linear parabolic opera-
tors:
Pu = —u, +a" Diju + b'D;u + cu,

where we use the summation convention and notation discussed in Section 3 of this
chapter. Under weak hypotheses on the coefficients of this operator (specifically,
that the matrix (a*/) be positive semidefinite and that ¢ be bounded from above),
the inequalities Pu > 0 in 2 and u < 0 on PQ) (the parabolic boundary of ()
imply that u < 0 in 2. Nirenberg's strong maximum principle implies that either
u < 0 or u = 0 on a suitable subset of §2 provided the conditions on the coefficients
are strengthened only slightly. Also, maximum estimates for solutions of various
initial-boundary value problems are examined.
Chapter 3 introduces the notion of weak solution for the problem

—u¢ + Di(a” Dju) = f in Q,u = p on PQ

when a* is a constant, positive definite matrix and f and ¢ are sufficiently smooth.
Unlike most discussions of this problem, we deal with noncylindrical domains di-
rectly. In particular, we show that this problem is solvable in sufficiently small
space-time balls. General properties of weak solutions and weak derivatives are
studied also. From the theory in balls, we derive an existence theorem in a wide
class of domains via a version of the Perron process.

The key to our study of linear equations is the Schauder-type estimates in Chap-
ter 4. These estimates relate the norms of solutions of initial-boundary value prob-
lems for these equations to the norms of the known quantities in the problems.
Specifically, the norms are parabolic Hélder norms, which can be considered as
bounds on fractional derivatives of the functions. The main estimates were first
proved by Barrar [12,13] and Friedman [64,65] using a representation formula for
solutions of the inhomogeneous heat equation. Our proof is based on Campanato’s
approach [33] and does not use any representation formulae, but it does need the
existence result of Chapter 3. The estimates of Chapter 4 are used in Chapter 5

1



2 I. INTRODUCTION

to prove the existence, uniqueness, and regularity of solutions for various initial-
boundary value problems under several different hypotheses on the regularity of the
data.

Chapter 6 contains a further investigation of weak solutions. The class of equa-
tions involved is much larger than that considered in Chapter 3 and the definition
of weak solution must be appropriately expanded. The first part of the chapter is
concerned with existence, uniqueness, and regularity questions for weak solutions in
suitable spaces. The second part covers the pointwise properties of weak solutions,
in particular with the (Holder) continuity of these solutions. These properties are
proved via estimates of the solutions in terms of weak information on the data of the
problem; such estimates are an important part of our study of nonlinear equations.

Our study of linear equations is completed in Chapter 7, which is devoted to
strong solutions of parabolic equations. These are functions having weak derivatives
in L? for some p > 1 and satisfying the equation only almost everywhere. We obtain
Schauder-type estimates in LP and pointwise estimates for strong solutions which
are analogous to the estimates in Chapter 6 for weak solutions. We also prove a
boundary Holder estimate for the normal derivative of a solution of the Cauchy-
Dirichlet problem in terms of pointwise estimates of the coefficients of the equation.
This estimate, originally proved by Krylov [137], is an important element in the
nonlinear theory.

We begin our study of nonlinear equations in Chapter 8, which introduces two
fixed point theorems. The first one, due to Schauder [233], is an infinite dimen-
sional version of the Brouwer fixed point theorem in R™ and is useful for studying
the Cauchy-Dirichlet problem for quasilinear equations. The second method, due
to Lieberman [169, 173], is a variant of a fixed point theorem of Kirk and Caristi
[125] related to the contraction mapping principle and is useful for studying non-
linear oblique derivative problems with quasilinear equations and fully nonlinear
equations (with either Cauchy-Dirichlet data or oblique derivative data). Our point
of view on existence is generally to prove local existence first (that is, existence for
a small time interval) and then global existence. Such an approach is especially
important in blow-up theory. Local existence is often proved using relatively simple
a priori estimates, but these estimates are the key to the global existence theory.
The Cauchy-Dirichlet problem and the oblique derivative problem are considered
separately.

The a priori estimates for the Cauchy-Dirichlet problem fall naturally into four
basic types:

(1) the maximum of the absolute value of the solution,

(2) the maximum of the length of the gradient on the parabolic boundary,
(3) the maximum of the length of the gradient in the domain,

(4) a Holder norm for the gradient.

These estimates are the topics of Chapters 9, 10, 11, and 12, respectively, and each
presupposes the preceding ones.
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Chapter 9 applies the maximum principle of Chapter 2 and the maximum esti-
mates of Chapter 6 to get pointwise bounds on the solution. In this chapter, we also
generate some comparison principles which are important for other, later estimates.

Chapter 10 is devoted to a boundary gradient bound, which turns out to be the
key estimate in the existence theory. We develop parabolic analogs of the Serrin
curvature conditions for elliptic equations [236], which relate the geometry of the
boundary to the structure of the differential equation. As in [236], we also show
that these conditions are necessary to solve the problem with arbitrary data. All
results are based on the comparison principle.

The gradient estimate is the topic of Chapter 11. The basis for proving such
an estimate goes back to Bernstein [16]: show that the square of the length of the
gradient of the solution satisfies a suitable differential inequality. Unlike Chapters
9 and 10, this chapter uses quite detailed structure conditions, and often a change
of dependent variable is useful.

Chapter 12 applies the Hélder estimates of Chapters 6 and 7 to the gradient of
the solution. Assuming that a bound is known for the gradient of the solution,
we prove the Holder estimates under very weak assumptions on the equation in
question. The chapter finishes with some examples which illustrate the various
structure conditions.

The oblique derivative problem is examined in Chapter 13. Since the techniques
are so similar to those for the Cauchy-Dirichlet problem, many proofs in this chapter
are sketched or omitted. An interesting feature of our study of the oblique derivative
problem is that we are not restricted to the conormal problem. For example, with
the heat equation —u; + Au = f(X), we may use the capillarity boundary condition
(1+ |Dul*)"/2Du -y + (X) = 0, where Du denotes the gradient of u and v is the
interior spatial normal. If f, ¢ and the domain are smooth enough, we shall show
that this problem has a solution for any smooth enough initial data (satisfying a
certain compatibility condition) provided ¥ satisfies the necessary condition for a
smooth solution: || < 1.

In Chapter 14, we consider a simple class of fully nonlinear equations, modeled
on the parabolic Bellman equation:

—up + 32£{a:j"(X)D.,u} =9,

where (a/) is a uniformly bounded, uniformly smooth family of uniformly positive
definite matrices. Such equations were first studied systematically by Evans and
Lenhart [57] and Krylov [136, 137]. The hypotheses of these authors are successfully
weakened here by using simplifications due to Safonov (230, 231].

Finally, Chapter 15 looks at a class of nonuniformly parabolic fully nonlinear
equations, modeled on the' parabolic Monge-Ampére equation:

—u, det D*u = ¢(X, u, Du).



4 I. INTRODUCTION

Elliptic versions of this equation and its generalizations were first studied by Caf-
farelli, Nirenberg, and Spruck [28, 29 ,30] and Ivochkina [97, 98, 99, 100, 101,
102]. Based on their work, we prove estimates and existence results for the para-
bolic equations. Our choice of parabolic Monge-Ampére equation was first identi-
fied by Krylov [134] as a suitable parabolc version of the equation det D?u = v,
and the corresponding generalizations were recognized by Reye [229] as worthy
of study. Other parabolic Monge-Ampére equations and their generalizations are
discussed briefly. The most noteworthy is that of Ivochkina and Ladyzhenskaya:
—uy + (det D?u)/™ = ). (See [103, 104].)

2. Further remarks

Although the notes in this book may seem quite extensive, we have really only
scratched the surface of the subject of parabolic equations. An examination of any
recent issue of Mathematical Reviews shows several dozen articles each month. Even
restricting attention to single, nondegenerate equations (as we have here) leaves a
staggering number of articles to read and assimilate. A complete bibliography would
be much longer than this book and it would be obsolete before it appeared in print.
Alternative sources of material which is directly relevant to the issues raised here
are [147), [50], [139], [224]. '

There are also a number of subjects not covered in this book. Some of them
are systems of parabolic equations and equations of higher order (see [147] and [4]),
degenerate equations ([45]), and probabilistic aspects of parabolic equations ([139]).

In an effort to keep this book at a managable size, I have given a single point of
view for most topics; for example, the Schauder estimates of Chapter 4 are proved
using the Campanato method, which reappears in the nonlinear theory (although
an alternative proof could be given using methods developed in Chapter 14). Many
other proofs of these estimates are known; in fact, an entire book could be written
just on the various means of proving them. Similarly, we have emphasized Moser
iteration to prove most estimates for weak solutions; deGiorgi iteration is also an
appropriate and frequently used technique, but it appears only briefly in Section
6.12. As a result of this single point of view, experts will certainly find a favorite
technique missing. For example, I have avoided use of representation of solutions via
Green's function and its cousin, potential representations. In addition, the method
of viscosity solutions does not appear here.

3. Notation

In this book, we adopt the following conventions. First we use X = (z,t) to
denote a point in R**! with n > 1; z will always be a point in R”. We also write
Y = (y,s). Superscripts will be used to denote coordinates, so = = (z',...z").
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Norms on R™ and R™*! are given by

E 1/2
|=| = (Z(I‘)z) and |X| = max{|z|, t|'/*},

i=1
respectively. A basis set of interest to us is the cylinder
Q(Xo, R) = Q(R) = {X € R™" ; [X = Xo| < R,t < to}.
We also use the ball
B(zg,R) = {z € R" : |z — 20| < R}.

We generally follow tensor notation. As previously indicated, superscripts denote
coordinates of points in R™. Also, subscripts denote differentiation with respect to
z. In particular,

du 8%u
Do = 5z Dt = 5008

for u a sufficiently smooth function and i and j integers between 1 and n, inclusive.
We also write Du for the vector (Dyu,..., D,u) and D?u for the matrix (D;;u).
On the other hand, we write u, (or occasionally D,u) for 8u/8t. In addition, we
follow the summation convention that any term with a repeated index 7 is summed
over i = 1 to n. For example,

n
b D= b'D;u.
i=1
To be formally correct, we should demand (as was the case in this example) that
one occurrence of the index be a superscript and the other be a subscript, but we
shall abuse this aspect of the summation convention when convenient.

A word of warning about superscripts and subscripts is also in order. Both
will be used as generic indices and to indicate differentiation with respect to other
variables. In addition, superscripts will also be used to indicate exponentiation. It
should be clear from the context which meaning is intended.

We use () to denote a domain in R**!, that is, Q is an open connected subset
of R**!, so for any X € Q, there is a positive number R such that the space-time
ball {X : |z — :t:0|2 + (t — to)? < R} is a subset of Q. For a fixed number tg, we
write w(tp) for the set of all points (z,19) in 2, and we define v(Xy) to be the unit
inner normal to w(tg) at Xo provided w(to) is not empty. We also write I(f2) for
the set of all ¢ such that w(t) is nonempty. Since 2 is connected, I(2) will be an
open interval. As usual, 99 denotes the topological boundary of 2. The parabolic
boundary P2 will be defined in Chapter 2.

We also use || to denote the Lebesgue measure of the set §2, and we define
diamQ = sup{|z — y| : X,Y in 0}, so diam is not the usual diameter of a set.
When 2 is a cylinder = w x (a,b), then diam$2 is the usual diameter of the
cross-section w, but if £ is noncylindrical, diam 2 may be strictly larger than the
diameter of any cross-section w(t).
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CHAPTER II

MAXIMUM PRINCIPLES

Introduction

An important tool in the theory of second order parabolic equations is the max-
imum principle, which asserts that the maximum of a solution to a homogeneous
linear parabolic equation in a domain must occur on the boundary of that domain.
In fact, this maximum must occur on a special subset of the boundary, called the
parabolic boundary. The strong maximum principle asserts that the solution is
constant (at least in a suitable subdomain) if the maximum occurs anywhere other
than on the parabolic boundary. The maximum principle is used to prove unique-
ness results for various boundary value problems, L* bounds for solutions and their
derivatives, and various continuity estimates as well,

1. The weak maximum principle

As noted in Chapter 1, we consider linear operators L defined by
Lu = a"(X)D;ju + b*(X)Diu + o(X)u — u, (2.1)

in an (n + 1)-dimensional domain 2. We assume that L is weakly parabolic. In

other words, -
a”(X)&E; > 0for all § € R" and all X € Q. (2.2)

We also write 7 for ¥ a¥, the trace of the matrix (a'/).

For a domain 0 C R"*!, we define the parabolic boundary PQ to be the set of
all points X € 90 such that for any £ > 0, the cylinder Q(Xy, ) contains points
not in Q. In the special case that 2 = D x (0,T) for some D C R™ and T > 0, PQ2
is the union of the sets B = D x {0} (which is the bottom of ), S = 8D x (0,T)
(which is the side of Q), and CQ2 = 8D x {0} (which is the corner of Q). These
sets (and their analogs for more general domains) will play an important role in the
theory of initial-boundary value problems.

The simplest version of the maximum principle is the following.

Lemma 2.1. Ifue C*(Q\PQ)NC°Q), if Lu>0in 0\ PQ and ifu < 0 on
PQ, then u < 0 in 8.

Proof. Suppose, to the contrary, that u > 0 somewhere in Q. Let t* = inf{¢ :
u(z,t) > 0 for some X € Q}. By continuity and the assumption that « < 0 on

7



