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Knots and Feynman Diagrams

This book provides an accessible and up-to-date introduction to how
knot theory and Feynman diagrams can be used to illuminate problems
in quantum field theory.

Beginning with a summary of key ideas from perturbative quantum
field theory and an introduction to the Hopf algebra structure of re-
normalization, early chapters discuss the rationality of ladder diagrams
and simple link diagrams. The necessary basics of knot theory are then
presented and the number-theoretic relationship between the topology of
Feynman diagrams and knot theory is explored. Later chapters discuss
four-term relations motivated by the discovery of Vassiliev invariants in
knot theory and draw a link to algebraic structures recently observed in
non-commutative geometry. Detailed references are included.

Dealing with material at perhaps the most productive interface
between mathematics and physics, the book will not only be of consider-
able interest to theoretical and particle physicists, but also to many
mathematicians.
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1
Introduction

1.1 Motivation

This book addresses perturbative Quantum Field Theory (pQFT).
This may seem to be an old-fashioned subject. Looking at Schweb-
er’s wonderful account of its history [Schweber 1994], it is indeed
clear that it goes back more than half a century. But, neverthe-
less, pQFT has dominated particle physics ever since. It is still the
only successful tool we have to calculate everyday cross-sections
required to compare our present understanding of theory with ex-
periment. On the other hand, the quest to overcome pQFT has
spurred a large amount of the recent developments in high-energy
physics theory. This quest stems from the fact that pQFT has sev-
eral features which are widely regarded as unsatisfactory. Amongst
them is the problem of ultraviolet (UV)-divergences. From the
very beginning, it was the most prominent problem of pQFT, and
its solution was often regarded as technical and as lacking in eleg-
ance. The idea to overcome pQFT by something which was not
based on seemingly ill-defined quantities from the very beginning
is usually accepted as a motivation for other approaches to QFT.
Thus, there are two major currents in present day approaches to
QFT. On the one hand, there is the inelegant technical machin-
ery of pQFT, pushed forward by the practitioners of multiloop
calculations, testing and so far confirming the theory to higher
and higher levels in the perturbative loop expansion of the Stan-
dard Model of elementary particle physics. On the other hand, at
a conceptual level, pQFT is often considered insufficient. Thus,
there are alternative approaches, notably string theory, inspired
by beautiful mathematics [Dijkgraaf 1997], but unable so far to
relate to phenomena as they appear in the laboratory.

It is the hope of the author that this book might reconcile the
two ends to some extent. It reports recent developments which
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2 Introduction

concern structures and patterns of remarkable and unexpected
beauty in the setup of pQFT. These patterns pop up in the most
notorious corner of pQFT: the very presence of ill-defined, UV-
singular, integrals.

This book will report on these developments in almost inverted
historical order, for conceptual clarity. In 1994, the idea emerged
that there might be a connection between low-dimensional topol-
ogy, renormalization and number theory [Kreimer 1997a]. The
novel observation was the fact that certain Feynman diagrams
deliver overall counterterms which are Laurent series with coeffi-
cients in Q, the number field of rationals [Kreimer 1995, Delbourgo
et al. 1995, Delbourgo et al. 1996, Kreimer 1997a]. It turned out
that this always happened when the topology of these diagrams
was relatively simple, while the concrete realization of these overall
counterterms in one or the other pQFT was of lesser importance.
The subject began to flourish when, in an intense collaboration
between the author and David Broadhurst, it turned out that
Feynman diagrams of more complicated topology deliver coeffi-
cients ¢ Q [Broadhurst and Kreimer 1995, Broadhurst and Krei-
mer 1996]. And, even more remarkably, the topological differences
of such diagrams could be described by associating various differ-
ent knots with them, by some empirical and ad hoc rules [Broad-
hurst and Kreimer 1995, Broadhurst and Kreimer 1996, Kreimer
1997a). This, in turn, established a faithful knot to number dic-
tionary: whenever a certain graph delivered a certain knot, there
was a corresponding transcendental as a coefficient in its overall
counterterm.

The underlying philosophy is loosely described as follows: as-
sume you have a way to assign a Laurent series in a parameter
€ to each Feynman graph. You are interested in the limit ¢ — 0.
The pole terms in this Laurent series reflect the ill-definedness
of the Feynman integrals associated with these graphs. You may
wonder if you can infer from these pole terms the topology of the
graph under consideration. This would mean that your mapping
from graphs to numbers — coefficients in your Laurent series —
is a topological invariant, in the sense that topologically distinct
graphs evaluate to different numbers. But what do we mean by
saying, that these numbers differ? Let us say that two numbers
differ if they are not rational multiples of each other. This suggests



