FUNDAMENTALS OF

DATA STRUCTURES IN 1/ WA\

{
HOROWITZ

Fundamentals of
Data Structures in Pascal

FOURTH EDITION

Ellis Horowitz

University of Southern California

Sartaj Sahni

University of Florida

ilifli_
S
COMPUTER SCIENCE PRESS

An imprint of W. H. Freeman and Company

New York

Cover illustration by Richard Elmer

Fundamentals of Data Structures in Pascal is the result of the
combined efforts of the authors. Their names have been listed in
alphabetical order with no implication that one is senior and the
other junior.

Copyright © 1976, 1982 by Computer Science Press
Copyright © 1990, 1994 by W. H. Freeman and Company
No part of this book may be reproduced by any mechanical,
photographic, or electronic process, or in the form of a
phonographic recording, nor may it be stored in a retrieval
system, transmitted, or otherwise copied for public or private
use, without written permission from the publisher.

Printed in the United States of America

Computer Science Press

An imprint of W. H. Freeman and Company

The book publishing arm of Scientific American

41 Madison Avenue, New York, NY 10010

20 Beaumont Street, Oxford OX1 2NQ, England

1234567890 RRD 9987654

PREFACE

This edition retains the in-depth discussion of the algorithms and computing time ana-
lyses found in earlier editions of this book. In addition we have attempted to preserve
the chapter organization and the presentation style of the earlier editions whenever it
was desirable. But this has not kept us from making improvements. For example, the
discussion of strings is now found in the chapter on arrays; internal and external sorting
methods have now been combined into a single chapter, Chapter 7; the previous chapter
on advanced data structures has been split into two chapters, Chapter 9 which deals with
heap structures and Chapter 10 which deals exclusively with search structures; exercises
are now placed immediately after the relevant section. We have rearranged the sections
in each chapter so that the basic material appears early in the chapter and the difficult or
optional material appears at the end of the chapter.

One of the major new features in this book, compared to its earlier version, is the
inclusion of abstract data types. The major idea is to separate out the issue of data type
specification from implementation. Languages such as Ada provide direct support for
such a split, but in Pascal there is no equivalent construct. Therefore, we have devised a
straightforward notation in which we express an abstract data type. Basically, we pro-
vide a description of the objects of the type followed by the names and arguments of the
functions of the type. Instructors can discuss with the students the specification of the
data type before moving on to implementation issues and concerns for efficiency of the
algorithms.

In several sections, we have enhanced the presentation by including additional
material. For example, the discussion on the representation of sets by trees has been
enhanced by the inclusion of two additional strategies for tree compaction and an addi-

xiii

xiv Preface

tional strategy for combining two trees during a union operation; the discussion on
single-source/all-destinations shortest paths has been extended to include an algorithm
for the case when edge weights may be negative; the discussion on binary search trees
and red-black trees has been extended to include the operations of split, join, and com-
bine.

USING THIS TEXT FOR A COURSE

For the instructor who intends to use this book and is teaching on a semester basis we
present the following two possibilities, a medium pace and a rigorous pace. The medium
pace is recommended when the course is for begining computer science majors, possibly
their second or third course of the curriculum. Most people, including the authors, have
taught according to the medium pace. The outline below corresponds to the curriculum
recommended by the ACM, in particular course C2, (Curriculum *78, CACM 3/79, and
CACM 8/85).

SEMESTER SCHEDULE - MEDIUM PACE

Week Subject Reading Assignment

| Intro. to Algorithms and Data Organization Chapter 1
2 Arrays Chapter 2
3 Arrays (strings) First program due
4 Stacks and Queues Chapter 3
5 Linked Lists (singly and doubly linked) Chapter 4
6 Linked Lists Second program due
7 Trees (basic facts, binary trees) Chapter 5
8 Trees (search, heap)
9 Mid Term

10 Graphs (basic facts, representations) Chapter 6

11 Graphs (shortest paths, spanning trees, Third program due

topological sorting)
12 Internal Sorting (insertion, quick, and merge) Chapter 7

13 Internal Sorting (heap, radix) Fourth program due
14 Hashing Chapter 8

15 Heap Structures (Selected Topics) Chapter 9

16 Search Structures (Selected Topics) Chapter 10

We recommend that several programming assignments be given, spaced somewhat
evenly thoughout the semester. The aim of the first program is primarily to get the stu-
dents familiar with the computing environment. The second program should emphasize
list structures, as discussed in Chapter 4. There are several suggestions for projects at the
end of the exercises of Chapter 4. One topic we have chosen to skip is external sorting.

Preface xv

This leaves time to cover one of the most important of techniques, hashing. This topic is
used in several courses later on in the curriculum, so it is important to cover it this
semester. The instructor will likely not have time to cover the material in the Search
Structures chapter. Perhaps one or two topics can be selectively chosen.

The more rigorous pace would be appropriate when the book is used for a first year
graduate course, or for an advanced undergraduate course. Our suggested outline fol-
lows.

SEMESTER SCHEDULE - RIGOROUS PACE

Week Subject Reading Assignment
1 Intro. to Algorithms and Data Organization Chapter 1
2 Arrays Chapter 2
3 Stacks and Queues Chapter 3
First program due
4 Linked Lists Chapter 4
5 Trees Chapter 5
6 Trees continued Second program due
7 Mid Term
8 Graphs Chapter 6
9 Graphs continued Third program due
10 Internal Sorting Chapter 7
11 External Sorting Chapter 7
12 Hashing Chapter 8
13 Heap Structures Chapter 9
Fourth program due
14 Heap Structures Chapter 9
15 Search Structures Chapter 10
16 Search Structures Chapter 10

The programming assignments and midterm exam are paced exactly as in the
medium case. However, the lectures proceed at a faster rate. For the rigorous pace, two
weeks are allotted for Chapters 9 and 10. This allows the coverage of only a few to-
pics selected from each chapter.

Finally we present a curriculum for an advanced Data Structures course. This
presupposes that the student has already encountered the basic material, in particular the
material on lists, trees, and graphs. Four weeks on advanced data structures gives the in-
structor enough time to cover all of the relevant topics in depth.

xvi Preface

SEMESTER SCHEDULE - ADVANCED DATA STRUCTURES COURSE

Week
1

s W

~ 3

10
11
12
13
14

15
16

Subject

Reading Assignment

Review of Basic Material on Algorithms

Review of Basic List structures
Review of Trees

Review of Graphs

Review of Internal Sorting

External Sorting
External Sorting (continued)
Hashing

Heap Structures (min-max heaps, deaps,

leftist trees)

Mid Term

Heaps Structures (Fibonacci heaps)
Search Structures (Optimal

binary search trees)

Search Structures (AVL trees,

2-3 trees, 2-3-4 trees)

Search Structures (Red-black trees,
splay trees, digital trees)

Search Structures (B-trees, tries)
Search Structures

Chapters 1-2
Chapters 3-4
Chapter 5
Chapter 6
Chapter 7

First program due
Chapter 7

Chapter 8

Second program due
Chapter 9

Chapter 9
Chapter 10

Third program due

Fourth program due

For schools on the quarter system, the following two quarter sequence is possible.
It assumes prior exposure to algorithm analysis and elementary data structures at the lev-
el obtained from an advanced programming course.

QUARTER 1
Week Subject Reading Assignment
1 Review of algorithms and arrays Chapters 1-2
2 Stacks and Queues Chapter 3
3 Linked Lists (stacks, queues, polynomials) Chapter 4
4 Linked Lists
5 Trees (traversal, set representation) Chapter 5

First program due

Preface xvii

6 Trees (heaps, search)

Mid Term
7 Graphs (traversal, components) Chapter 6
8 Graphs (minimum spanning trees)
9 Graphs (shortest paths) Second program due
0 Graphs (activity networks)
QUARTER 2
Week Subject Reading Assignment
1 Internal Sorting (insertion, quick, Chapter 7
bound, O(1) space merging, merge sort)
2 Sorting (heap, radix, list, table)
3 External Sorting Chapter 7
4 Hashing Chapter 8
5 Mid Term First program due
6 Heap Structures (deaps, Chapter
Min-Max heaps, Leftist trees)
7 Heap Structures (Fibonacci Heaps)
8 Search Structures (AVL trees, Chapter 10
2-3 trees, 2-3-4 trees)
9 Search Structures (Red-black trees, Second program due
splay trees, digital trees)
10 Search Structures (B-Trees, tries)

Once again we would like to thank the people who have assisted us in debugging
this edition. Thanks go to Professor Dinesh Mehta, University of Tennessee Space Insti-
tute, and to Mr. Seonghun Cho, Mr. Venkatramanan Narayanan, and Mr. Vishal Walia,
University of Florida and to Ms. Penny Hull, Associate Managing Editor, W. H. Free-
man.

Ellis Horowitz
Sartaj Sahni
September 1993

CONTENTS

PREFACE xiii

CHAPTER 1 BASIC CONCEPTS 1

1.1 Overview: System Life Cycle 1

1.2 Algorithm Specification 4
1.2.1 Introduction 4
1.2.2 Recursive Algorithms 9

1.3 Data Abstraction 14

1.4 Performance Analysis And Measurement 17
1.4.1 Performance Analysis 18
1.4.2 Performance Measurement 40
1.4.3 Generating Test Data 51

1.5 References And Selected Readings 55

CHAPTER 2 ARRAYS 57
2.1 The Array As An Abstract Data Type 57
2.2 The Polynomial Abstract Data Type 58
2.3 Sparse Matrices 67
2.3.1 Transposing A Matrix 68
2.3.2 Matrix Multiplication 73
2.4 Representation Of Arrays 78
2.5 The String Abstract Data Type 82

vi Contents

2.6 References And Selected Readings 89
2.7 Additional Exercises 89

CHAPTER 3 STACKS AND QUEUES 97
3.1 The Stack Abstract Data Type 97
3.2 The Queue Abstract Data Type 102
3.3 A Mazing Problem 108
3.4 Evaluation of Expressions 114
3.4.1 Expressions 114
3.42 Postfix Notation 115
3.4.3 Infix to Postfix 117
3.5 Multiple Stacks And Queues 121
3.6 Selected Readings And References 125
3.7 Additional Exercises 125

CHAPTER 4 LINKED LISTS 128
4.1 Singly Linked Lists 128
4.2 Linked Stacks And Queues 138
4.3 Polynomials 141
4.3.1 Polynomial Representation 141
4.3.2 Adding Polynomials 142
433 Erasing Polynomials 146
4.3.4 Circularly List Representation Of Polynomials
43.5 Summary 150
4.4 Additional Operations 152
4.4.1 Operations For Chains 152
4.4.2 Operations For Circular Lists 153
4.5 Equivalence Relations 155
4.6 Sparse Matrices 160
4.6.1 Sparse Matrix Representation 160
4.6.2 Sparse Matrix Input 163
4.6.3 Erasing A Sparse Matrix 165
4.7 Doubly Linked Lists 168
4.8 Dynamic Storage Management 172
4.9 Generalized Lists 188
49.1 Representation Of Generalized Lists 188
492 Recursive Algorithms For Lists 192
493 Reference Counts, Shared And Recursive Lists
4.10 Garbage Collection And Compaction 203
4.10.1 Introduction 203
4.10.2 Marking 203
4.10.3 Storage Compaction 212
4.11 References And Selected Readings 217

147

195

CHAPTER 5 TREES 218
5.1 Introduction 218
5.1.1 Terminology 218
5.1.2 Representation Of Trees 221
5.2 Binary Trees 224
5.2.1 The Abstract Data Type 224
5.2.2 Properties Of Binary Trees 227
5.2.3 Binary Tree Representations 229
5.3 Binary Tree Traversal 233
53.1 Introduction 233
5.3.2 Inorder Traversal 233
5.3.3 Preorder Traversal 234
5.3.4 Postorder Traversal 235
5.3.5 Iterative Inorder Traversal 236
5.3.6 Level-Order Traversal 238
5.3.7 Traversal Without A Stack 239
5.4 Additional Binary Tree Operations 241
5.4.1 Copying Binary Trees 241
5.4.2 Testing Equality 242
5.4.3 The Satisfiability Problem 242
5.5 Threaded Binary Trees 246
5.5.1 Threads 246

Contents vii

5.5.2 Inorder Traversal Of A Threaded Binary Tree 248

5.5.3 Inserting A Node Into A Threaded Binary Tree
5.6 Heaps 252
5.6.1 Definitions 252
5.6.2 Priority Queues 253
5.6.3 Insertion Into A Max Heap 255
5.6.4 Deletion From A Max Heap 257
5.7 Binary Search Trees 259
5.7.1 Definition 259
5.7.2 Searching A Binary Search Tree 260
5.7.3 Inserting Into A Binary Search Tree 261
5.7.4 Deletion From A Binary Search Tree 263
5.7.5 Joining And Splitting Binary Search Trees 264
5.7.6 Height Of A Binary Search Tree 267
5.8 Selection Trees 268
5.8.1 Introduction 268
5.8.2 Winner Trees 268
5.8.3 Looser Trees 270
5.9 Forests 272
5.9.1 Transforming A Forest Into A Binary Search Tree
5.9.2 Forest Traversals 273

249

273

viii Contents

5.10 Set Representation 275

5.10.1 Introduction 275

5.10.2 Union And Find Operations 276

5.10.3 Application To Equivalence Classes 284
5.11 Counting Binary Trees 287

5.11.1 Distinct Binary Trees 287

5.11.2 Stack Permutations 288

5.11.3 Matrix Multiplication 289

5.11.4 Number Of Distinct Binary Trees 291
5.12 References And Selected Readings 292

CHAPTER 6 GRAPHS 293
6.1 The Graph Abstract Data Type 293
6.1.1 Introduction 293
6.1.2 Definitions 295
6.1.3 Graph Representations 299
6.2 Elementary Graph Operations 307
6.2.1 Depth First Search 307
6.2.2 Breadth First Search 308
6.2.3 Connected Components 310
6.2.4 Spanning Trees 311
6.2.5 Biconnected Components 313
6.3 Minimum Cost Spanning Trees 318
6.3.1 Kruskai’s Algorithm 319
6.3.2 Prim’s Algorithm 322
6.3.3 Sollin’s Algorithm 323
6.4 Shortest Paths And Transitive Closure 325
6.4.1 Single Source/All Destination: Nonnegative Edge Costs
6.4.2 Single Source/All Destination: General Weights 329
6.4.3 All-Pairs Shortest Paths 333
6.4.4 Transitive Closure 335
6.5 Activity Networks 340
6.5.1 Activity On Vertex (AOV) Networks 340
6.5.2 Activity On Edge (AOE) Networks 345
6.6 References And Selected Readings 355
6.7 Additional Exercises 356

CHAPTER 7 SORTING 359
7.1 Motivation 359
7.2 Insertion Sort 363
7.3 Quick Sort 366
7.4 How Fast Can We Sort? 370

326

Contents ix

7.5 Merge Sort 372
7.5.1 Merging 372
7.5.2 Iterative Merge Sort 377
7.5.3 Recursive Merge Sort 379
7.6 Heap Sort 384
7.7 Sorting On Several Keys 386
7.8 List And Table Sorts 392
7.9 Summary Of Internal Sorting 401
7.10 External Sorting 405
7.10.1 Introduction 405
7.10.2 k-way Merging 409
7.10.3 Buffer Handling For Parallel Operation 410
7.10.4 Run Generation 417
7.10.5 Optimal Merging Of Runs 419
7.11 References And Selected Readings 424

CHAPTER 8 HASHING 425
8.1 The Symbol Table Abstract Data Type 425
8.2 Static Hashing 427
8.2.1 Hash Tables 427
8.2.2 Hashing Functions 429
8.2.3 Overflow Handling 432
8.2.4 Theoretical Evaluation Of Overflow Techniques 438
8.3 Dynamic Hashing 442
8.3.1 Motivation For Dynamic Hashing 442
8.3.2 Dynamic Hashing Using Directories 443
8.3.3 Analysis Of Directory-Based Dynamic Hashing 449
8.3.4 Directoryless Dynamic Hashing 452
8.4 References And Selected Readings 456

CHAPTER 9 HEAP STRUCTURES 458
9.1 Min-Max Heaps 458
9.1.1 Definitions 458
9.1.2 Insertion Into A Min-Max Heap 459
9.1.3 Deletion Of The Min Element 462
9.2 Deaps 466
9.2.1 Definition 466
9.2.2 Insertion Into A Deap 467
9.2.3 Deletion Of The Min Element 470
9.3 Leftist Trees 473
9.4 Binomial Heaps 480
9.4.1 Cost Amortization 430
9.4.2 Definition Of Binomial Heaps 481

x Contents

9.5

9.6

9.43 Insertion Into A Binomial Heap 483
9.4.4 Combining Two Binomial Heaps 483
9.4.5 Deletion Of Min Element 483

9.4.6 Analysis 485

Fibonacci Heaps 488

9.5.1 Definition 488

9.5.2 Deletion From An F-heap 489

9.5.3 Decrease Key 490

9.5.4 Cascading Cut 490

9.5.5 Analysis 491

9.5.6 Application To The Shortest Paths Problem
References And Selected Readings 496

CHAPTER 10 SEARCH STRUCTURES 497

10.1
10.2
10.3

10.4

10.5

10.6

10.7
10.8

Optimal Binary Search Trees 497

AVL Trees 507

2-3 Trees 523

10.3.1 Definition And Properties 523

10.3.2 Searching A 2-3 Tree 524

10.3.3 Insertion Into A 2-3 Tree 525

10.3.4 Deletion From A 2-3 Tree 528

2-3-4 Trees 536

10.4.1 Definition And Properties 536

104.2 Top-Down Insertion 538

10.4.3 Top-Down Deletion 541

Red-Black Trees 545

10.5.1 Definition And Properties 545

10.5.2 Searching A Red-Black Tree 548
10.5.3 Top-Down Insertion 548

10.5.4 Bottom-Up Insertion 550

10.5.5 Deletion From A Red-Black Tree 554
10.5.6 Joining And Splitting Red-Black Trees
B-Trees 558

10.6.1 Definition Of m-way Search Trees 558
10.6.2 Searching An m-way Search Tree 560
10.6.3 Definition And Properties Of A B-tree
10.6.4 Insertion Into A B-tree 563

10.6.5 Deletion From A B-tree 567

10.6.6 Variable Size Key Values 570

Splay Trees 574

Digital Search Trees 580

10.8.1 Definition 580

554

561

494

10.8.2
10.8.3
10.9 Tries
10.9.1
10.9.2
10.9.3
1094
10.9.5
10.9.6

Binary Tries 581
Patricia 582

587
Definition 587
Searching A Trie 589
Sampling Strategies 591
Insertion Into A Trie 592
Deletion From A Trie 593
Node Structure 594

10.10 Differential Files 596

10.10.1

The Concept 596

10.10.2 Bloom Filters 598
10.11 References And Selected Readings 600

INDEX

603

Contents xi

CHAPTER 1

BASIC CONCEPTS

11 OVERVIEW: SYSTEM LIFE CYCLE

We assume that our readers have a strong background in structured programming, typi-
cally attained through the completion of an elementary programming course. Such an
initial course usually emphasizes mastering the syntax of a programming language (its
grammar rules) and applying this language to the solution of several relatively small
problems. These problems are frequently chosen so that they use a particular language
construct. For example, the programming problem might require the use of arrays or
while loops.

In this text we want to move you beyond these rudiments by providing you with
the tools and techniques necessary to design and implement large-scale computer sys-
tems. We believe that a solid foundation in data abstraction, algorithm specification, and
performance analysis and measurement provides the necessary methodology. In this
chapter, we will discuss each of these areas in detail. We will also briefly discuss recur-
sive programming because many of you probably have only a fleeting acquaintance with
this important technique. However, before we begin, we want to place these tools in a
context that views programming as more than writing code. Good programmers regard
large-scale computer programs as systems that contain many complex interacting parts.
As systems, these programs undergo a development process called the system life cycle.
This cycle consists of requirements, analysis, design, coding, and verification phases.
Although we will consider them separately, these phases are highly interrelated and fol-

1

2 Basic Concepts

low only a very crude sequential time frame. The References and Selected Readings
section lists several sources on the system life cycle and its various phases that will pro-
vide you with additional information.

(1) Requirements. All large programming projects begin with a set of specifications
that define the purpose of the project. These requirements describe the information that
we, the programmers, are given (input) and the results that we must produce (output).
Frequently the initial specifications are defined vaguely, and we must develop rigorous
input and output descriptions that include all cases.

(2) Analysis. After we have delineated carefully the system’s requirements, the analysis
phase begins in eamnest. In this phase, we begin to break the problem down into manage-
able pieces. There are two approaches to analysis: bottom-up and top-down. The
bottom-up approach is an older, unstructured strategy that places an early emphasis on
the coding fine points. Since the programmer does not have a master plan for the project,
the resulting program frequently has many loosely connected, error-ridden segments.
Bottom-up analysis is akin to constructing a building from a generic blueprint. That is,
we view all buildings identically; they must have walls, a roof, plumbing, and heating.
The specific purpose to which the building will be put is irrelevant from this perspective.
Although few of us would want to live in a home constructed using this technique, many
programmers, particularly beginning ones, believe that they can create good, error-free
programs without prior planning.

In contrast, the top-down approach begins with the purpose that the program will
serve and uses this end product to divide the program into manageable segments. This
technique generates diagrams that are used to design the system. Frequently, several al-
ternate solutions to the programming problem are developed and compared during this
phase.

(3) Design. This phase continues the work done in the analysis phase. The designer ap-
proaches the system from the perspectives of the data objects that the program needs and
the operations performed on them. The first perspective leads to the creation of abstract
data types, whereas the second requires the specification of algorithms and a considera-
tion of algorithm design strategies. For example, suppose that we are designing a
scheduling system for a university. Typical data objects might include students, courses,
and professors. Typical operations might include inserting, removing, and searching
within each object or between them. That is, we might want to add a course to the list of
university courses or search for the courses taught by a specific professor.

Since the abstract data types and the algorithm specifications are language-
independent, we postpone implementation decisions. Although we must specify the in-
formation required for each data object, we ignore coding details. For example, we
might decide that the student data object should include name, social security number,
major, and phone number. However, we would not yet pick a specific implementation
for the list of students. As we will see in later chapters, there are several possibilities, in-
cluding arrays, linked lists, or trees. By deferring implementation issues as long as pos-

