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PREFACE

This edition retains the in-depth discussion of the algorithms and computing time ana-
lyses found in earlier editions of this book. In addition we have attempted to preserve
the chapter organization and the presentation style of the earlier editions whenever it
was desirable. But this has not kept us from making improvements. For example, the
discussion of strings is now found in the chapter on arrays; internal and external sorting
methods have now been combined into a single chapter, Chapter 7; the previous chapter
on advanced data structures has been split into two chapters, Chapter 9 which deals with
heap structures and Chapter 10 which deals exclusively with search structures; exercises
are now placed immediately after the relevant section. We have rearranged the sections
in each chapter so that the basic material appears early in the chapter and the difficult or
optional material appears at the end of the chapter.

One of the major new features in this book, compared to its earlier version, is the
inclusion of abstract data types. The major idea is to separate out the issue of data type
specification from implementation. Languages such as Ada provide direct support for
such a split, but in Pascal there is no equivalent construct. Therefore, we have devised a
straightforward notation in which we express an abstract data type. Basically, we pro-
vide a description of the objects of the type followed by the names and arguments of the
functions of the type. Instructors can discuss with the students the specification of the
data type before moving on to implementation issues and concerns for efficiency of the
algorithms.

In several sections, we have enhanced the presentation by including additional
material. For example, the discussion on the representation of sets by trees has been
enhanced by the inclusion of two additional strategies for tree compaction and an addi-
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xiv Preface

tional strategy for combining two trees during a union operation; the discussion on
single-source/all-destinations shortest paths has been extended to include an algorithm
for the case when edge weights may be negative; the discussion on binary search trees
and red-black trees has been extended to include the operations of split, join, and com-
bine.

USING THIS TEXT FOR A COURSE

For the instructor who intends to use this book and is teaching on a semester basis we
present the following two possibilities, a medium pace and a rigorous pace. The medium
pace is recommended when the course is for begining computer science majors, possibly
their second or third course of the curriculum. Most people, including the authors, have
taught according to the medium pace. The outline below corresponds to the curriculum
recommended by the ACM, in particular course C2, (Curriculum *78, CACM 3/79, and
CACM 8/85).

SEMESTER SCHEDULE - MEDIUM PACE

Week Subject Reading Assignment

| Intro. to Algorithms and Data Organization Chapter 1
2 Arrays Chapter 2
3 Arrays (strings) First program due
4 Stacks and Queues Chapter 3
5 Linked Lists (singly and doubly linked) Chapter 4
6 Linked Lists Second program due
7 Trees (basic facts, binary trees) Chapter 5
8 Trees (search, heap)
9 Mid Term

10 Graphs (basic facts, representations) Chapter 6

11 Graphs (shortest paths, spanning trees, Third program due

topological sorting)
12 Internal Sorting (insertion, quick, and merge)  Chapter 7

13 Internal Sorting (heap, radix) Fourth program due
14 Hashing Chapter 8

15 Heap Structures (Selected Topics) Chapter 9

16 Search Structures (Selected Topics) Chapter 10

We recommend that several programming assignments be given, spaced somewhat
evenly thoughout the semester. The aim of the first program is primarily to get the stu-
dents familiar with the computing environment. The second program should emphasize
list structures, as discussed in Chapter 4. There are several suggestions for projects at the
end of the exercises of Chapter 4. One topic we have chosen to skip is external sorting.
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This leaves time to cover one of the most important of techniques, hashing. This topic is
used in several courses later on in the curriculum, so it is important to cover it this
semester. The instructor will likely not have time to cover the material in the Search
Structures chapter. Perhaps one or two topics can be selectively chosen.

The more rigorous pace would be appropriate when the book is used for a first year
graduate course, or for an advanced undergraduate course. Our suggested outline fol-
lows.

SEMESTER SCHEDULE - RIGOROUS PACE

Week Subject Reading Assignment
1 Intro. to Algorithms and Data Organization  Chapter 1
2 Arrays Chapter 2
3 Stacks and Queues Chapter 3
First program due
4 Linked Lists Chapter 4
5 Trees Chapter 5
6 Trees continued Second program due
7 Mid Term
8 Graphs Chapter 6
9 Graphs continued Third program due
10 Internal Sorting Chapter 7
11 External Sorting Chapter 7
12 Hashing Chapter 8
13 Heap Structures Chapter 9
Fourth program due
14 Heap Structures Chapter 9
15 Search Structures Chapter 10
16 Search Structures Chapter 10

The programming assignments and midterm exam are paced exactly as in the
medium case. However, the lectures proceed at a faster rate. For the rigorous pace, two
weeks are allotted for Chapters 9 and 10. This allows the coverage of only a few to-
pics selected from each chapter.

Finally we present a curriculum for an advanced Data Structures course. This
presupposes that the student has already encountered the basic material, in particular the
material on lists, trees, and graphs. Four weeks on advanced data structures gives the in-
structor enough time to cover all of the relevant topics in depth.
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SEMESTER SCHEDULE - ADVANCED DATA STRUCTURES COURSE

Week
1

s W

~ 3

10
11
12
13
14

15
16

Subject

Reading Assignment

Review of Basic Material on Algorithms

Review of Basic List structures
Review of Trees

Review of Graphs

Review of Internal Sorting

External Sorting
External Sorting (continued)
Hashing

Heap Structures (min-max heaps, deaps,

leftist trees)

Mid Term

Heaps Structures (Fibonacci heaps)
Search Structures (Optimal

binary search trees)

Search Structures (AVL trees,

2-3 trees, 2-3-4 trees)

Search Structures (Red-black trees,
splay trees, digital trees)

Search Structures (B-trees, tries)
Search Structures

Chapters 1-2
Chapters 3-4
Chapter 5
Chapter 6
Chapter 7

First program due
Chapter 7

Chapter 8

Second program due
Chapter 9

Chapter 9
Chapter 10

Third program due

Fourth program due

For schools on the quarter system, the following two quarter sequence is possible.
It assumes prior exposure to algorithm analysis and elementary data structures at the lev-
el obtained from an advanced programming course.

QUARTER 1
Week Subject Reading Assignment
1 Review of algorithms and arrays Chapters 1-2
2 Stacks and Queues Chapter 3
3 Linked Lists (stacks, queues, polynomials)  Chapter 4
4 Linked Lists
5 Trees (traversal, set representation) Chapter 5

First program due
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6 Trees (heaps, search)

Mid Term
7 Graphs (traversal, components) Chapter 6
8 Graphs (minimum spanning trees)
9 Graphs (shortest paths) Second program due
0 Graphs (activity networks)
QUARTER 2
Week Subject Reading Assignment
1 Internal Sorting (insertion, quick, Chapter 7
bound, O(1) space merging, merge sort)
2 Sorting (heap, radix, list, table)
3 External Sorting Chapter 7
4 Hashing Chapter 8
5 Mid Term First program due
6 Heap Structures (deaps, Chapter
Min-Max heaps, Leftist trees)
7 Heap Structures (Fibonacci Heaps)
8 Search Structures (AVL trees, Chapter 10
2-3 trees, 2-3-4 trees)
9 Search Structures (Red-black trees, Second program due
splay trees, digital trees)
10 Search Structures (B-Trees, tries)

Once again we would like to thank the people who have assisted us in debugging
this edition. Thanks go to Professor Dinesh Mehta, University of Tennessee Space Insti-
tute, and to Mr. Seonghun Cho, Mr. Venkatramanan Narayanan, and Mr. Vishal Walia,
University of Florida and to Ms. Penny Hull, Associate Managing Editor, W. H. Free-
man.

Ellis Horowitz
Sartaj Sahni
September 1993
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CHAPTER 1

BASIC CONCEPTS

11 OVERVIEW: SYSTEM LIFE CYCLE

We assume that our readers have a strong background in structured programming, typi-
cally attained through the completion of an elementary programming course. Such an
initial course usually emphasizes mastering the syntax of a programming language (its
grammar rules) and applying this language to the solution of several relatively small
problems. These problems are frequently chosen so that they use a particular language
construct. For example, the programming problem might require the use of arrays or
while loops.

In this text we want to move you beyond these rudiments by providing you with
the tools and techniques necessary to design and implement large-scale computer sys-
tems. We believe that a solid foundation in data abstraction, algorithm specification, and
performance analysis and measurement provides the necessary methodology. In this
chapter, we will discuss each of these areas in detail. We will also briefly discuss recur-
sive programming because many of you probably have only a fleeting acquaintance with
this important technique. However, before we begin, we want to place these tools in a
context that views programming as more than writing code. Good programmers regard
large-scale computer programs as systems that contain many complex interacting parts.
As systems, these programs undergo a development process called the system life cycle.
This cycle consists of requirements, analysis, design, coding, and verification phases.
Although we will consider them separately, these phases are highly interrelated and fol-

1



2 Basic Concepts

low only a very crude sequential time frame. The References and Selected Readings
section lists several sources on the system life cycle and its various phases that will pro-
vide you with additional information.

(1) Requirements. All large programming projects begin with a set of specifications
that define the purpose of the project. These requirements describe the information that
we, the programmers, are given (input) and the results that we must produce (output).
Frequently the initial specifications are defined vaguely, and we must develop rigorous
input and output descriptions that include all cases.

(2) Analysis. After we have delineated carefully the system’s requirements, the analysis
phase begins in eamnest. In this phase, we begin to break the problem down into manage-
able pieces. There are two approaches to analysis: bottom-up and top-down. The
bottom-up approach is an older, unstructured strategy that places an early emphasis on
the coding fine points. Since the programmer does not have a master plan for the project,
the resulting program frequently has many loosely connected, error-ridden segments.
Bottom-up analysis is akin to constructing a building from a generic blueprint. That is,
we view all buildings identically; they must have walls, a roof, plumbing, and heating.
The specific purpose to which the building will be put is irrelevant from this perspective.
Although few of us would want to live in a home constructed using this technique, many
programmers, particularly beginning ones, believe that they can create good, error-free
programs without prior planning.

In contrast, the top-down approach begins with the purpose that the program will
serve and uses this end product to divide the program into manageable segments. This
technique generates diagrams that are used to design the system. Frequently, several al-
ternate solutions to the programming problem are developed and compared during this
phase.

(3) Design. This phase continues the work done in the analysis phase. The designer ap-
proaches the system from the perspectives of the data objects that the program needs and
the operations performed on them. The first perspective leads to the creation of abstract
data types, whereas the second requires the specification of algorithms and a considera-
tion of algorithm design strategies. For example, suppose that we are designing a
scheduling system for a university. Typical data objects might include students, courses,
and professors. Typical operations might include inserting, removing, and searching
within each object or between them. That is, we might want to add a course to the list of
university courses or search for the courses taught by a specific professor.

Since the abstract data types and the algorithm specifications are language-
independent, we postpone implementation decisions. Although we must specify the in-
formation required for each data object, we ignore coding details. For example, we
might decide that the student data object should include name, social security number,
major, and phone number. However, we would not yet pick a specific implementation
for the list of students. As we will see in later chapters, there are several possibilities, in-
cluding arrays, linked lists, or trees. By deferring implementation issues as long as pos-



