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PREFACE

In investigating the highly different phenomena in nature, scientists
have always tried to find some fundamental principles that can explain
the variety from a basic unity. Today they have not only shown that ail
the various kinds of matter are built up from a rather limited number of
atoms, but also that these atoms are constituted of a few basic elements
or building blocks. It seems possible to understand the innermost structure
of matter and its behavior in terms of a few elementary particles: elec-
trons, protons, neutrons, photons, etc., and their interactions. Since
these particles obey not the laws of classical physics but the rules of
- modern quantum theory or wave mechanics established in 1925, there has
developed a new field of ““quantum science” which deals with the explana-
tion of nature on this ground.

Quantum chemistry deals particularly with the electronic structure of
atoms, molecules, and crystalline matter and describes it in terms of
electronic wave patterns. It uses physical and chemical insight, sophisti-
cated mathematics, and high-speed computing to.solve the wave equations
and achieve its results. Its goals are great, but perhaps the new field can
better boast of its conceptual framework than of its numerical accom-
plishments. It provides a unification of the natural sciences which was
previously unconceivable, and.the modern development of cellular biology
shows that the life sciences are now in turn using the same basis. ““Quan-
tum biology” is a new field which describes the life processes and the
functioning of the cell on a molecular and submolecular level.

Quantum chemistry is hence a rapidly developing field which falls
between the historically established areas of mathematics, physics, chem-
istry, and biology. As a result there is a wide diversity of backgrounds
among those interested in quantum chemistry. Since the results of the
research are reported in periodicals of many different types, it has become
increasingly difficult both for the expert and the nonexpert to follow the
rapid development in this new borderline area.

The purpose of this series is to try to present a survey of the current
development of quantum chemistry as it is seen by a number of the
internationally leading research workers in various countries. The authors
have been invited to give their personal points of view of the subject
freely and without severe space limitations. No attempts have been made
to avoid overlap—on the contrary, it has seemed desirable to have certain
important research areas reviewed from different points of view. The

vii



viil Preface

response from the authors has been almost overwhelming, and a second
volume is now being prepared.

The editor would like to thank the authors for their contributions
which give an interesting picture of the current status of selected parts of
quantum chemistry. Special thanks go to two of the great pioneers in the
field, Professor Egil A. Hylleraas and Professor John C. Slater, as active
as ever, who have taken the trouble to give us their personal views on
two fundamental problems.

1t is our hope that the collection of surveys of various parts of quantum
chemistry and its advances presented here will prove to be valuable and
stimulating, not only to the active research workers but also to the scien-
tists in neighboring fields of physics, chemistry, and biology, who are
turning to the elementary particles and their behavior to explain the
details and innermost structure of their experimental phenomena.

August, 1964 Per-OLOv LOWDIN
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1. Introduction

The present contribution to “Advances in Quantum Chemistry” is -
not intended to have the character of an encyclopedia article. Those who
are interested i a complete treatment of the item should consult the
thorough treatment given by Bethe and Salpeter (1957), which is complete
up to the year of publication.

In the present article I take this opportunity of freedom to follow up
some particularly interesting problems, more or less according to their
historical development. This means, for instance, that we shall concentrate
mainly upon the ground state problem, because of its ease of comparison
with experimental data. From the point of view of quantum chemistry
this is also a most important problem, since in the theory of chemical
compounds one is mainly looking for ground states.

Because the field of résearch even within the atomic two-electron problem
is so vast, a great number of investigations will be missing in the present
article. This does not in any way mean that they are of secondary impor-
tance, but only that we are here considering those works which are necessary
when talking freely of methods and results. Since a full report of
works done in the field together with a documentation of their particular
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importance can be found in the above-mentioned encyclopedia article by
Bethe and Salpeter, I consider this procedure legitimate.

Il. The Early State of the Helium Problem
A. The Hydrogen and Helium Atoms in the Bohr Theory

1. The Hydrogen Atom

The natural frequency unit in atomic spectroscopy is the Rydberg
constant R. The practical unit however is a reciprocal length R/c, which is
usually also termed R. Because of the slight motion of the nucleus with
respect to the electron-nucleus center of mass, the R (or R/c) varies a little
from atom to atom. For heavy atoms it converges toward a theoretical
limit R,. According to latest expert calculation (Cohen and Du Mond, 1957)
the following values can be given:

R, = 109,737.309 cm™%,
Ry = 109,677.576 cm™ !, (D
Ryee = 109,722.26 cm™ L.

The natural energy unit in atomic theory therefore becomes
m, {e?\? e? h?
Rh =2 (—) = = , 2
2 \h 2ay’ u moe* @

where # = h/2n and m, and e are mass and charge of the electron. This
corresponds to the kinetic energy of an electron with velocity ce, where

a= o b 3)

is the fine structure constant appearing in the Bohr-Sommerfeld relativistic
theory of the hydrogen atom. It is also half the absolute value of the
potential energy of an electron at a distance ey from the hydrogen nucleus.

At the earliest stage of the Bohr theory, even in its primitive shape of
circular electron orbit, a full set of energy levels was found,

E,= —Rh/n?. @

When the theory was supplemented with the conception of elliptical orbit,
as quantized even with respect to orientation in space, the energy formula
remained unchanged. Among the triple of quantum numbers, now denoted
by n, I, and m, i.e., principal, azimutal, and equatorial quantum numbers,
only n is significant for the energy The degree of degeneration, i.e., the
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numbers of independent states belonging to the same energy level, is
n?=1,4,9, ..., just half the numbers 2n® characteristic for the various
groups of the periodic system of basic elements. The doubling has been
explained by the existence of electron spin and the necessity to have it
quantized by a double-valued quantum number.

If relativistic theory is applied, a separation of energy states with respect
to the azimutal quantum number / is produced. The separation is of the
order of magnitude «?Rh and is correctly given by the famous Sommerfeld
fine structure formula. A slight deviation called the Lamb effect was later
found and must be thought of as a reaction from a virtual radiation field.

2. The Helium Atom and Ion

With this background of successful treatment of the hydrogen atom one
must wonder that no numerical result of any value whatsoever could be
obtained for the helium atom with its two electrons. This was caused by the
well-known difficulties of many-body problems in classical mechanics.
The Bohr rules for quantization of electron orbits

§pdq=nh (5)

were inapplicable because the presupposed periodic or quasi-periodic
character of the motion did not exist. The division of the procedure of
quantization into two steps, solution of classical equations of motion
followed by a selection of orbits by quantization rules, became fatal, and
this could be mended only by an entirely new form of quantum theory, a
true quantum mechanics.

The only state of the He atom which could at all be visualized in some
tolerable form was the ground state. The states of the He* ion with only
one electron as well as the general one-electron atom (ion) with nuclear
charge Ze are as clear as those of the hydrogen atom, and their energy
levels in nonrelativistic treatment are

E,= —Z*Rh/n*. (6

If the two electrons of the He atom are placed on either side of the
nucleus, rotating in the same direction on the same circular orbit and with
the same appropriate speed, it cannet be denied that they are moving
periodically and according to classical mechanical laws. With this specia-
lization, quantum rules can also be applied. The result must be an ionic
energy for each electron corresponding to the effective nuclear charge
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Z=2-0.25=1.75, which gives a total energy —6.125Rh and an
ionization energy for the first electron

Iy, = 2.125Rh = 28.9 eV. Q)

This energy is more than 4 eV too large.

From the viewpoint of wave mechanics this is due to a far too strong
correlation between the motions of the two electrons which must be very
much weakened in order that the configuration can exist.

B. Simple Wave Mechanics of Two-Electron Atoms

1. The Schridinger Wave Eguation in Atomic Units
For a conservative mechanical system, the Schrédinger wave equation
reads :

Hy = Ey, ®

where y represents a state and is called the wave function. It is a function

of the coordinates of the system, and H is the energy operator which is

found from the classical Hamiltonian of the system in replacing momentum

variables p by differential operators —ihd/0g. Hence the wave equation

for the H atom is

LRI W 9

(- v+ ) = Ev. -

To simplify the equation it is tempting to apply atomic units, preferably

the unit of length ay of Eq. (9), which on dividing Eq. (9) by e?/ay = 2Rh
yields the equation

(-hw s Dy -ms, e

with coordinates measured in units @y and the energy in double Rydberg
units. This is seen to be equivalent to choosing m,, e, and 4 for principal
units.of mass, charge, and action from which other units are obtained as
secondary units. The velocity, for instance, is that of the electron velocity
e?/f on the first Bohr circular electron orbit of the hydrogen atom, which
gives to the speed of light the numerical value ¢ = 137.

Even though this is the most attractive and logical choice, there is another’
one which sometimes may be preferred on the basis that radial functions
are of the confluent hypergeometric type which are most easily expressed
by Laguerre functions, using for unit of length ay,. This system is obtained
by changing the unit of mass into 2m, with the effect that the energy unit
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. becomes 4RA. If nevertheless the energy is measured in the conventional
unit R4, we must replace £ by 3 E in the wave equation. Hence the hydrogen
wave equation becomes

(-v +§)¢ — 1EV. . (1)

Passing to the two-electron atom with nuclear charge Ze, the wave
equation reads

Z Z
(-vi-v: B 1)

ry, denoting the interelectronic distance. From the point of view of per-
turbation theory we should rather use the equation

v2-v2-———+

{ 1 1 1
Fy Zry,

E
V= (13

in changing to the unit of length ay,/2Z. In this equation 1/Z naturally
appears as a perturbation parameter.

2. Perturbation Energy
Disregarding the perturbation function

, 1
14 =z (13a)

=

the unperturbed ground state wave function and energy are
1
Vo= o exp[—3(r; +1))] and E,= -2Z% (13b)

the latter being the energy of two one-electron atoms in the ground state.
If the volume element is taken to be

d‘!’ = rir% Sin 01 Sin 02 dr‘ drz dex doz d¢1 d¢2 N (130)

it means that y, is normalized to unity. Then the first-order perturbation
energy is

E, =42 J—l— y?dr. (13d)
I
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This is the potential energy of two spherically symmetric electric charges
for which, in the expansion

o~ Z r,HP,(cos 0), (14)

cos 8 = cos 8, cos 8, + sin, @ sin 8, cos(¢d, — ¢,),

we need consider only the first term. Hence, performing the integration in
the angle variables and taking double the half-space integral, the result is

E, =2ZJ‘ e " rzd—1:—-§Z
r2>rq r, 4 (15)
dv =riridr, dr,.
The energy and ionization energy become
=-27>+32, [=2Z>-%Z (16)
This means that He has an ionization energy
I'=1.5Rh=20.4¢eV, (16a)

which is about as much too small as the artificial Bohr—Sommerfeld orbital
ionization value was too large.

3. Improved Perturbation Method
If we take the perturbing function to be

1(1 5(1 1
Vi==|——-— -}, 17
! Z{rlz 16( +"2)} a7
leaving for the unperturbed potential energy only

1 1 51
Vo= —k , k=1-— 17
° (r, r,) 162’ (172)
the perturbation energy becomes zero, because of the similarly simple
shape exp[—k(r, + r;)/2] of the unperturbed energy

5 25
E = —2Z%?*= —222+ZZ—1—2—8'. (18)

This improves the ionization energy with approximately +Rh or nearly 2.7
eV into J =23.06 eV.
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This, 1 think, was approximately the reasoning of Kellner (1927) in
his first substantial improvement of the ground state energy of He on the
basis of an effective nuclear charge, until in a private discussion Max Born
pointed out that any effective nuclear charge kZ = Z — § (above é =5/16)
might be introduced, its actual value having to be fixed by 2 minimum
requirement for the energy.

4. A Simple Form of the Variational Method: the Scale Factor k
The wave equation can be derived from, and hence is equivalent to, the
variational principle

oI =0, I= Jw*Hw dr, (19)
with the restriction

N= I Yrdr=1. (192)

Alternatively, the variation 8y may be unrestricted and the variational
principle be replaced by
6l —ESN =0, (19b)

or, finally, the energy may be defined as a stationary value of its mean or
expectation value,
E=IN, (19

with the same free variation 3y of ¥.
Again we try a new transformation of the wave equation, choosing for
independent variables

r' =kr, (20

i.e., changing again the unit of length by a scale parameter k. In such
coordinates the two-electron wave equation reads

{K*T + kV + kV'|Z}Y = (E[4Z*)Y, (20a)

1 1 1
T=-V%,=-V:-V2, V=—(—+—), V'=—, (20b)

rhn T ry2

where, for simplicity, the primed coordinates have again been replaced
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by unprimed letters. The expectation energy value for real ¥ is now given
by
(E/4Z*)N = — KL — L/Z) + k*M,
1 1 1
N=j|/12dr, L=J(—+—)¢2 dr, L'=J——¢I2dt, #3))
r; T2

r
M= —f W(Vi + V3N dt =J'{(V1¢)2 +(V29)*} de.

With the former wave function (13b), now expressed in the new co-
ordinates, we have

1
N=1, =1, f=—, =—. 2
| L =% M=3. (21a)
Minimizing the energy with respect to £ we have
E = —2Z%?, k=1 > 1 (21b)

162’
giving exactly the already discussed energy value from the improved
perturbation method of Eq. (18).

5. The Virial Theorem
The scaling method is one of highest general interest. Consider any
system of charged particles interacting by Coulomb forces. If in a certain
system its Hamiltonian is
T H=T+V (22)
and its expectation energy
E=M-1L, (22a)

whére,T and V are kinetic and potential energy operators and
M _=f¢T|p dt, L= —I yViydr, with J‘!/lz dt=1, (22b)
are kinetic and potential expectation values, respectively. The corresponding
result in the scaled system is
E = k*M — kL. (22¢c)

If ¥ in the first system is the true wave function, then we have energy
minimum at k = 1. On the other hand, from the minimum condition,
k =L/2M, and the negative potential energy is numerically twice the
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kinetic energy. Not only for energy calculations but also for other purposes
it is highly important to have the virial theorem fulfilled in this way.

C. Para and Ortho States of Two-Electron Systems

1. Symmetry Properties of Wave Functions
Consider the many-electron atomic Hamiltonian

H=T+V+V', (23)
T= i L (23a)
= & 2m0 Pi

Ze?
V=-Y% — (23b)

N g2
V=Y —, (23¢)

i<k=1 Ty

and its wave equation

Hy = Ey. » (29

The Hamiltonian is symmetric in the electron coordinates and moments.
Hence, introducing the permutation operator P,, meaning the interchange
of variables / and &,
P.,H=H. (24a)
Also
Py(Hy) = (PyHXPyy) = H(Pyy). (24b)

Hence, multiplying Eq. (24) by P,,, we have
H(Pyy) = E(Pyy), (25)
and P,y is a solution of Eq. (24), belonging to the same energy value E
as y itself.
Since PZ = I, the eigenvalues of P, are

P, = +1. (25a)

From Eq. (24b) it follows that P,, commutes with H and hence is a con-
stant of the motion. Its quantized values require either symmetric or
antisymmetric wave functions with respect to the variables i and k.



