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Foreword

Optimization is a discipline that plays a key role in modeling and solving
problems in most areas of engineering and sciences. Optimization tools are
used to understand the dynamics of information networks, financial markets,
solve logistics and supply chain problems, design new drugs, solve biomedical
problems, design renewable and sustainable energy systems, reduce pollution,
and improve health care systems. In general, we have convex optimization
models, which, at least in theory, can be solved efficiently, and nonconvex
optimization models that are computationally very hard to solve. Designing
efficient algorithms and heuristics for solving optimization problems requires
a very good understanding of the mathematics of optimization. For example,
the development of optimality conditions, the theory of convexity, and com-
putational complexity theory have been instrumental for the development of
computational optimization algorithms.

The book Pseudolinear Functions and Optimization by Shashi Kant
Mishra and Balendu Bhooshan Upadhyay, sets the mathematical foundations
for a class of optimization problems. Although convexity theory plays the
most important role in optimization, several attempts have been made to ex-
tend the theory to generalized convexity. Such extensions were necessary to
understand optimization models in a wide spectrum of applications.

The book Pseudolinear Functions and Optimization is to my knowledge
the first book that is dedicated to a specific class of generalized convex func-
tions that are called pseudolinear functions. This is an in-depth study of the
mathematics of pseudolinear functions and their applications. Most of the
recent results on pseudolinear functions are covered in this book.

The writing is pleasant and rigorous and the presentation of material is
very clear. The book will definitely will be useful for the optimization com-
munity and will have a lasting effect.

Panos M. Pardalos

Distinguished Professor

Paul and Heidi Brown Preeminent Professor
in Industrial and Systems Engineering
Unwversity of Florida

Guainesville, USA
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Preface

In 1967 Kortanek and Evans [149] studied the properties of the class of func-
tions, which are both pseudoconvex and pseudoconcave. This class of functions
were later termed as pseudolinear functions. In 1984 Chew and Choo [47] de-
rived first and second order characterizations for pseudolinear functions. The
linear and quadratic fractional functions are particular cases of pseudolinear
functions. Several authors have studied pseudolinear functions and their char-
acterizations, see Cambini and Carosi [34], Schaible and Ibaraki [246], Rapcsak
[233], Komlosi [147], Kaul et al. [139], Lu and Zhu [171], Dinh et al. [67], Zhao
and Tang [298], Ansari and Rezaei [4] and Mishra et al. [200].

Chapter 1 is introductory and contains basic definitions and concepts
needed in the book.

Chapter 2, presents basic properties and characterization results on pseu-
dolinear functions. Further, it includes semilocal pseudolinear functions, Dini
differentiable pseudolinear functions, locally Lipschitz pseudolinear functions,
h-pseudolinear functions, directionally differentiable pseudolinear functions,
weakly pseudolinear functions and their characterizations.

Chapter 3, presents characterizations of solution sets of pseudolinear opti-
mization problems, linear fractional optimization problems, directionally dif-
ferentiable pseudolinear optimization problems, h-pseudolinear optimization
problems and locally Lipschitz optimization problems.

Chapter 4, presents characterizations of solution sets in terms of Lagrange
multipliers for pseudolinear optimization problems and its other generaliza-
tions given in Chapter 3.

Chapter 5, considers multiobjective pseudolinear optimization problems
and multiobjective fractional pseudolinear optimization problems and presents
optimality conditions and duality results for these two problems.

Chapter 6, extends the results of Chapter 5 to locally Lipschitz functions
using the Clarke subdifferentials.

Chapter 7, considers static minmax pseudolinear optimization problems
and static minmax fractional pseudolinear optimization problems and presents
optimality conditions and duality results for these two problems.

Chapter 8, extends the results of Chapter 7 to locally Lipschitz functions
using the Clarke subdifferentials.

Chapter 9, presents optimality and duality results for h-pseudolinear op-
timization problems.

XV



xvi Preface

Chapter 10, presents optimality and duality results for semi-infinite pseu-
dolinear optimization problems.

Chapter 11, presents relationships between vector variational inequalities
and vector optimization problems involving pseudolinear functions. Moreover,
relationships between vector variational inequalities and vector optimization
problems involving locally Lipschitz pseudolinear functions using the Clarke
subdifferentials are also presented.

Chapter 12, presents an extension of pseudolinear functions are used to
establish results on variational inequality problems.

Chapter 13, presents results on n-pseudolinear functions and characteriza-
tions of solution sets of n-pseudolinear optimization problems.

Chapter 14, presents pseudolinear functions on Riemannian manifolds and
characterizations of solution sets of pseudolinear optimization problems on
Riemannian manifolds. Moreover, n-pseudolinear functions and characteriza-
tions of solution sets of n-pseudolinear optimization problems on differentiable
manifolds are also presented.

Chapter 15, presents results on pseudolinearity of quadratic fractional
functions.

Chapter 16, extends the class of pseudolinear functions and n-pseudolinear
functions to pseudolinear and 7-pseudolinear fuzzy mappings and character-
izations of solution sets of pseudolinear fuzzy optimization problems and 7-
pseudolinear fuzzy optimization problems.

Finally, in Chapter 17, some applications of pseudolinear optimization
problems to hospital management and economics are given.

The authors are thankful to Prof. Nicolas Hadjisavvas for his help and dis-
cussion in Chapter 4. The authors are indebted to Prof. Juan Enrich Martinez-
Legaz, Prof. Pierre Marechal, Prof. Dinh The Luc, Prof. Le Thi Hoai An, Prof.
Sy-Ming Guu, Prof. King Keung Lai, and Prof. S.K. Neogy for their help, sup-
port, and encouragement in the course of writing this book. The authors are
also thankful to Ms. Aastha Sharma from CRC Press for her patience and
effort in handling the book.

Shashi Kant Mishra
Balendu Bhooshan Upadhyay

MATLAB® is a registered trademark of The MathWorks, Inc.
For product information, please contact:

The MathWorks, Inc.

3 Apple Hill Drive

Natick, MA 01760-2098 USA

Tel: 508 647 7000

Fax: 508-647-7001

E-mail: info@mathworks.com

Web: www.mathworks.com
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Symbol Description
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