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Preface

This book is designed primarily to supplement ‘standard te_xtboo_ics -_ir"i.v fluid

mechanics and hydraulics. It is based on the author’s conviction that clarlﬁcatlon o

and understanding of the basic principles of any branch of mechamcs can be accom- =
plished best by means of numerous lllustratxve problems. ' :

The previous edition of this book has been very favorably" received " In: this
second edition many chapters have been revised and enlarged to keep pace w1’ch the
most recent concepts, methods and terminology. Attention is. focused ‘earlier on
Dimensional Analysis by placing this expanded material in Chapter 5, The most
extensive revisions are in the chapters on Fundamentals of Fluid Flow, Fluid Flow. .
in Pipes, and Flow in Open Channels. : s

The subject matter is divided into chapters covering duly-recognized areas of :
theory and study. Each chapter begins with statements of pertinent definitions,
principles and theorems together with illustrative and descriptive material. This
material is followed by graded sets of solved and supplementary problems. The
solved problems illustrate and amplify the theory, present methods of analysis,
provide practical examples, and bring into sharp focus those fine points which enable
the student to apply the basic principles correctly “and confidently. * _Free body -
analysis, vector diagrams, the principles of work and energy and of 1mpulse—momentum,
and Newton’s laws of motion are utlhzed throughout the book. Effort has been
made to present orlgmal problems developed by the author during many years of
teaching the subject. Numerous proofs of theorems and derivations of formulas
are included among the solved problems “The large number of supplementary prob-
lems serve as a complete review of the material of each chapter.

In addltlon to the use of this book by engineering students of fluid mechanics,
it -should be of considerable value as a reference book to the practicing engineer.
He will find well-detailed solutions to many practical problems and he can refer to
" the summary of the theory when necessity arises. Also, the hook should serve the
professional engineer who must review the ‘subject for licensing examinations or
" other reasons.

I wish to thank my colleague, Robert C. Stiefel, who carefully checked the solu-
tions to the many new problems. I also wish to express my gratitude to the staff of
Schaum Publishing Company, particularly to Henry Hayden and Nicola Miracapillo,
for their valuable suggestions and helpful cooperation.

RANALD V. GILES

Philadelphia, Pa.
June, 1962



SYMBOLS and ABBREVIATIONS

The following tabulation lists the lettet symbols used in this book. - Because the alphabet is limited,
it is impossible to avoid using the same letter to represent more than one concept. Since each symbol is

defined when it is first used, no confusion should result.

a
A
b

Cc
Cy

CcG
Cp

Cpo
Cr
CL
Cr
C:
cfs ..
d,D
D,

()

y

gpm
"h

H., b1
hp

I:y

K.

“acceleration in ft/sec?, area in ft?
-area in ft?

weir length in ft, width of water surface

in ft, bed width of open channel in ft

coefficient of discharge, celerity of pres-
sure wave in ft/sec (acotistic velocity)

coefficient of contraction

coefficient of velocity

coefficient (Chgzy), constant of integration
center of gravity

center of pressure, power coefficient for
propellers

coefficient of drag

thrust coefficient for propellers
coefficient of lift

torque coefficient for propellers
Hazen-Williams coefficient

cubic feet per second

diameter in feet

unit diameter in in.

efficiency

bulk modulus of elasticity in Ib/ft* or
Ib/in?, specific energy in ft1b/lb

friction factor (Darcy) for pipe flow
force in lb, thrust in lb

gravitational acceleration in ft/sec® =
32.2 ft/sec?

gallons per minute

head in ft, height or depth in ft, pressux;e
head in ft

total head (energy) in ft or ft1b/lb
lost head in ft (sometimes LH)
horsepower = w@QH/550 = 0.746 kw
moment of inertia in ft* or in*
product of inertia in ft* or in*

ratio of specific heats, isentropic (adia-
batic) exponent, von Karman constant

discharge' factors for trapezoidal chan-
nels, lost head factor for enlargements,
any constant

lost head factor for contractions
d

N,
N.
Nr
Nu

pl
P,
psf
psia
psig
Qu
To
Rg

Se
sp gr

U, v, W

‘mixing length in" £t

lehgth in ft

_equivalent length in ft

roughness factor in Bazin formula, weir
factor for dams

.mass in slugs or Ibsec?/ft, molecular

weight

roughness coefficient, exponent, rough-
ness factor in Kutter’s and Mannmg's
formulas

rotational speed in rpm
specific speed in rpm .

unit speed in rpm

Froude number
Mach number

"Weber number
. pressure in 1b/ft?, wetted penmeter in ft

pressure in lb/in?

force in 1b, power in ft 1b/sec
unit power in ft lb/s'ec

Ib/ft?

1b/in, absolute -

Ib/in?, gage .

unit flow in cfs/unit width

volume rate of flow in cfs

- unit discharge in cfs

any radius in ft
radius of pipe in ft

gas constant, hydraulic radius in ft

‘Reynolds Number

slope of hydraulic grade line, slope of
energy line

slope of channel bed
specific gravity

time in sec, thickness in in,, viscosity in
Saybolt sec

temperature, torque in ft b, time in sec

peripheral velocity of rotating element in
ft/sec

components of velocity in X, ¥ and Z
directions
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distance in ft
depth in ft, distance in £t
critical depth in ft ' |
normal depth in ft -

volume in ft3, local velocity in ft/sec,
relative velocity in hydraulic machines
in ft/sec

specific volume = 1/w = ft¥/1b
shear velocity in ft/sec = Vr/p

pansion factors for compressible flo
average velocity in ft/sec (or as defined) - R ’ 9 Sithea i

elevation. (head) in ft
critical velocity in ft/sec ( 3

'specific (unit) weight in 1b/ft?
weight in lb, weight flow in 1b/sec = wQ

NN RS S e

height of weir crest above ‘.channel bot-
tom, in ft : b

« (alpha) angle, kinetic-enexfgy correction factor
B (beta) angle, monientum correction factor T
3 (delta)  boundary layer thickness in ft

.A (delta) flow correction term

€ (epsilon) surface roughness in ft

7 (eta) eddy viscosity

0 (theta) ~ any angle

& (mu) absolute viscosity in 1b sec/ft* (or poises)

v (nu) kinematic viscosity in ft*/sec (or stokes) = u/p
7 (pi) dimensionless parameter it

p (rho) density in lb sec?/ft* or slugs/ft* = w/g ;
o (sigma) surface tension in Ib/ft, intensity of tensile stress in psi

7 (tau) shear stress in 1b/ft®
¢ (phi) speed factor, velocity potential, ratio
Y (psi) . stream function

o (omega) angular vélo‘city in rad/sec

Conversion Factors

1 cubic foot = 7.48 U.S. gallons = 28.32 liters
1 U.S. gallon = B8.338 poﬁnds of water at 60°F .
1 cubic foot per second = 0.646 million gallons pér day
= 448.8 gallons per minute
1 pound-second per square foot (u) = 478.7 pbiseg 1
1 square foot pex; second (v) = 929 sqﬁare centiméfersper second L
1 horsepower =" 550 foot-pounds per second .'= 0.746 kilowatts

30 inches of mercury- = 34 feet of water = 14.7 pdnnds’ per sctt_iare inch




Chapter

1

CONTENTS

PROPERTIES OF FLUIDS .......... .. . . .

Fluid mechanics and hydraulics. Definition of a fluid. American engi-
neering system of units. Specific weight. Mass density. Specific gravity.
Viscosity. Vapor pressure. Surface tension. Capillarity. Fluid pressure.
Unit pressure. Difference in pressure. Pressure variations in a com-

pressible fluid. Pressure head h. Bulk modulus of elasticity. Compression’

of gases. Isothermal conditions. Adiabatic or Isentropic conditions.
Pressure disturbances. =

Chapter

Fantl
/

HYDROSTATIC FORCE ON SURFACES.......... e e s

Force exerted on plane area. Line of action of force. Horizontal and
vertical components of force. Hoop tension. Longitudinal stress.

22

Chapter

BUOYANCY AND FLOTATION .. . .. e

Archimedes’ Principle. Stability of submerged and floating bodies.

36

Chapter

TRANSLATION AND ROTATION OF LIQUID MASSES. ..... \

" Horizontal motion. Vertical motion. Rotatlon of open vessels. Rotatlon
of closed vessels. ‘

42

Chapter

DIMENSIONAL ANALYSIS AND HYDRAULIC SIMILITUDE

Dimensional analysis. Buckirgham Pi theorem. Hydraulic models.
Geometric similitude. Kinematic similitude. Dynamic similitude. Inertia
force ratio. Inertia-pressure force ratio. Inertia-viscous force ratio.
Inertia-gravity force ratio. Inertia-elasticity force ratio. Inertia-surface
tensi07| ratio. Time ratios. v

50

Chapter

6

FUNDAMENTALS OF FLUID FLOW....... PRTPP IR AL i

Three significant concepts of fluid flow. _Fluid flow. Steady flow. Uni-
form flow. Streamlines. Streamtubes. Equation of continuity. Flownets.
Energy equation. Velocity head and kinetic- -energy correction factor.
Application of the Bernoulli theorem. Energy line. Hydraulic grade
‘line. Power

70



CONTENTS

Chapter 7  FLUID FLOW IN PIPESB . 0. iiciiiiinnrinaion. N 9
Energy principle. Laminar flow. Critical velocity. Reynolds number.
Turbulent flow. Shearing stress at pipe wall. Velocity distribution.
Loss of head for laminar flow. Darcy-Weisbach formula. Friction fac-
tor f. Other losses of head. ‘

Chapter 8 EQUIVALENT, COMPOUND, LOOPING AND
BRANCHING PIPES ... ... o it T R 115
" Piping systems and the Hardy Cross ‘method. Equivalent pipes. Com-
pound, lsoping and branching pipes. Methods of solution. Hazen-

Williamas formula.

1 ] Y . . 1

Chapter 9  MEASUREMENT OF FLOW OF FLUIDS...................... 133
' Introduction to velocity and quantlty measurements. Pltot tube. Coef-
ficient of discharge. Coefficient of velocity. Coefficient of contraction.

Lost head. Weirs. Weir formulas. Dams as weirs. Time to empty
tanks. Time to establish flow. R

Chapter 10 FLOW IN OPEN CHANNELS.......oeeuoiiiniuiarineernnieens 160

Open - channel. Steady, uniform flow. Non- uniform or varied flow.
Laminar flow. Chezy formula. Formulas for coefficient C. Discharge Q
by Manning formula. Lost head. Vertical distribution of velocity. Spe-
cific energy. Critical depth. Maximum unit flow. Critical flow in non-
rectangular channels. Non-uniform flow and backwater curves. Broad-
crested weirs. Hydraulic jump.

Chapter 11 FORCES DEVELOPED BY MOVING FLUIDS................ 192
. Impulse-Momentum principle. Momentum correction factor. Drag. Lift.
Total drag force. Drag coeﬂic1ents Lift coefficients. Mach number.
 Boundary layer theory. Formulas for flat plates. Water hammer. Super-
sonic speeds.

Chapter 12 FLUID MACHINERY ... v iaie e daassorsanioniensmensy 225
Fluid machinery. Rotating channels. Speed factors. Speed, discharge:
and power relations. Unit speed. Unit discharge. Unit power. Specific
speed. Efficiency. Cavitation. Propeller propulsion and coefficients.

.




CONTENTS

APPENDIX Page
Table 1. Properties of air, water, and some gases. . . ... 08808 8IS 246
2. Kinematic viscosity and specific gravity of certain liquids ...... 247
3.  Frictional factors f for water only......... LR R T Ly .. 248
4. Typical loss of head items «+«.... ovila Wgn b aelatuiern o g e B epy 249
5. Values of K for contractions and enlargements. . . ............ 250
6. Some values of Hazen-Williams coefficient Cy« ... ... Sy iens w ow 6 o 2D
7. Discharge coefficients of circular orifices « «....... Sk {ou ey ol e 251
8. Expansion factors Y for compressible flow S e e v v v vvvnnunennns 252
9. Average values of Manning’s » and Bazin’s m. . . . . o @ wm e wie e b 252
10. Values of Kutter's C ......... R T T 253
11.. Values of discharge factor K for trapezoidal channels . ........ 254
12.  Values of discharge factor K’ for trapezoidal channels . ....... 255
13. Areas of circles. .. ...... .5 S #7,5, $30 we veie: ey a6 Sessunas 200
14.

Weights and dimensions of cast iron pipe................... 256

DIAGRAMS

Diagram A-1. Moody diagram for frlctxonal factors f . eaeedssias 2b7
A-2. Modified Moody diagram for frictional factors f
(direct solution for flow Q) ........ 58 K 501 ¥ % 56 5§ 258
" B. Nomographic chart for Hazen-Williams formula (C; =100) .. 259
C.  Coefficients for pipe orificeS. . .« v v v vnvrvenennnnee.n. 260
D. Coefficients for flow nozzles .+ ........ R A LA 261
E. Coefficients for Venturi meters - -« v vvvvvennerennnnn.. 262
F. Coefficients of drag. . -« cvvvveenrnnnnnn. weh e WG ke 263
G.  Coefficients of drag for smooth flat plates........... .... 264
H. Coefficients of drag at supersonic velocities « . ........... . 265
INDEX . .. BENER i 267"



Chapter 1

Properties of Fluids

FLUID MECHANICS and HYDRAULICS

Fluid mechanics and hydraulics represent that branch of apphed mechanics dealing
with the behavior of fluids at rest and in motion. In the development of the principles

of fluid mechanics, some fluid properties play prmclpal roles, others only minor roles -
no roles at all. In fluid statics, specific weight is the important property, whereas 2y S

fluid flow, densxty and yviscosity are predominant properties. Where appreciable compres-

sibility occurs, principles of thermodynamics must be considered. Vapor pressure becomes .

important when negative pressures (zage) are involved, and surface tension affects static
and flow conditions in small passages.

DEFINITION of a FLUID

Fluids are substances which are capable of flowing and which conform to the shape
of containing vessels. When in equilibrium, fluids- cannot sustain tangential or shear
forces. All fluids have some degree of compressibility and offer little .resistance to change
of form. el ¥ ;

Fluids may be divided into liquids and gases. The chief differences between liquids
and gases are (a) liquids are practically incompressible whereas gases are compressible
and often must be so treated and (b) liquids occupy definite yolumes and have free surfaces :
whereas a given mass of gas expands until it occupies all portions of any containing vessel.: *

AMERICAN ENGINEERING SYSTEM of UNITS

Three selected reference dimensions (fundamental dimensions) are length, force and
time. In this book the corresponding three fundamental units used will be the foot of
length, the pound of force (or pound weight), and the second of time. "All other units may

. be derived from these. Thus unit volume is the ft3, unit accelerationh is the ft/sec?, unit
work is the ft 1b, and unit pressure is the lb/ft2. Should data be given in other units,
they must be converted to the foot-pound-second system before applying them to the solu-
tion of problems.

The unit for mass in this system, the slug, is derived from' the units of force and
“acceleration. For a freely falling body in vacuum the acceleration is that of gravity
(9 = 82.2 ft/sec?at sealevel) and the only force acting is its weight. From Newton’s second
law, .
; force in pounds = mass in slugs X acceleration in ft/'sec2

Then weight in pounds = mass in slugs X g(32.2iff/Séce)
- : weight W in pounds
9(32.2 ft/sec?)

(1)

s e mass M in slugs =
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'SPEC'IFIC WEIGHT

The specific weight w of a substance is the weight of a unit volume of the substance.
For liquids, w0 may be taken as constant for practical changes of pressure. The specific
(unit) weight of water for ordinary temperature variations is 62.4 Ib/ft?. See Appendix,
Tables 1C and 2, for additional values. :

The specific weights of gaseé may be calculated by using the equation of state of a gas

or Vi P% — R (Boyle’s and Charles’ laws) (2)
L5 whg;:e pressure p is ab_sélu_te pressure in lb/ftz,‘speciﬁc volume v,-is the volume per unit
"avefght in ft*/Ib, temperature T* is the absolute temperature in degrees Rankine (460° +
degrees Fahrenheit), and R is the gas constant in feet/degree Rankine. Since w =1/v,,
the above equation may be written ‘

AR 1 bia i(S8)

MASS DENSITY of a BODY ; (rho) = mass per unit volume = w/g.

In the engineering system of units, the mass density‘ of water is 62.4/32.2=1.94
~ shugs/ft* or 1b sec?/ft'. In the metric system the density of water is 1 g/em® at 4°C. See \
- Appendix, Table 1C. :

SPECIFIC GRAVITY of a BODY :
The specific gravity of a body is that pure number which denotes the ratio of the
weight of a body to the weight of an equal! volume of a substance taken as a standard.
‘Solids and liquids are feferred to water (at89.2°F =4°C) as standard, while gases are
“often referred to air free of CQ2 or hydrogen (at 32°F =0°C and 1 atmosphere = 14.7 lb/in?
pressure) as standard. For example, f’”» Tesrioh P :
L "t i g AR weight of the substance
b g grajl g e S. a’_‘f’e ~ _ weight of equal volume water

(4)

_ ‘ , _ . specific weight of substance
: -~ specific weight of water

Thus if the specific gravity of a given oil is 0.750, its specific weight ‘is 0.750(62.4 1b/ft?)
,‘:7._46.8"1b/ff3'.._ R =3 L : ¥ Zat e

. The specific gravity of water is 1.00 and of mereury is 13.57. The specific gravity
of a substance is the same in any system of measures. See Appendix, Table 2.

VISCOSITY of a FLUID
' _ The viscosity of a fluid is that property :
which determines the amount of its resistance \ i P
to a shearing force. . Viscosity is due primarily
to interaction between fluid molecules.

Referring to Fig. 1-1, consider two large,
-parallel plates at a small distance y apart, the
space between the plates being filled with ‘a
fluid.- ‘Consider the upper plate ‘acted on by a
constant force F' and hence moving at a con-

Fixed Plate

Fig.11 .

ko
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&

stant velocity U. The fluid in contact with the upper plate will adhere to it and will move
at velocity U, and the fluid in contact with the fixed plate will have velocity zero. If dis-
tance y and velocity U a@re not too great, the velocity variation (gradient) will be a straight
line. Experiments have shown that force F varies with the area of the plate, with velocity
U, and inversely with distance y. Since by similar trlangles, Uly=dV/dy, we have

: - AU dav » F av

{0 a3 - = — —_— — e

Y dy e A TS Wy
where r = F/A = shearstress. If a groportionallty ‘constant u (mu), called the absolute

* (dynamic) viscosity, is introduced,

_ 4a¥V o T i
T = p.dy or p, - = __dV/dy (5
lbsec _. lb/ft? 1b sec

The units of n are

e since (Ft/sec) Tt = g Fluids which follow the relgtion of
equation (5) are called Newtonian fluids (see Problem 9).

Another viscosity coefficient, the kinematic coeffictent of viscosity, is defined as

absolute viscosity p
mass density g

Kinematic coefficient v (nu)

o Tt P wlg’ w _‘ (6)
: : 2 2 2
The units of v are ﬁ, since (b sec/ft%)(ft/sec?) = f—t
sec _ Ib/ft3 sec
P Viscosities are reported in handbooks as poises and stokes (cgsunits) and on occasion

as Saybolt seconds, from v1sc031meter measurements. . Conversions to the ft-lb-sec system
are illustrated in Problems 6-8. A few values of v1sc031t1es are given in Tables 1 and 2
of the Appendix.

Viscosities of liquids decrease with temperature increases but are not affected ap-
preciably by pressure changes. The absolute viscosity of gases increases with increase in
temperature but is not appreciably changed due to pressure. Since the specific weight. of

_ gases changes with pressure changes (temperature constant), the kinematic viscosity varies
inversely as the pressure. However, from the equation above, ng = wv.

VAPOR PRESSURE

When evaporation takes place within an eﬁclosed space, the partial pressure created
by the vapor molecules is called vapor pressure. Vapor pressures depend upon tempera—
ture and increase w1th it. See Table 1C for values for water.

SURFACE TENSION

A molecule in the interior of a liquid is under attractive forces in all directions, and
the vector sum of these forces is zero. But a molecule at the surface of a liquid is acted
on by a net inward cohesive force which is perpendicular to the surface. Hence it requires
work to move molecules to the surface against this opposing force, and surface molecules

. have more energy than Interior ones.

The surface tension of a liquid is the work that must be done to bring enough molecules
from inside the liquid to the surface to form one new unit area of that surface (ftlb/ft?).
4

@
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This work is numerically equal to #be, tangential contractile force acting across a hypo-
thetical line of unit length on the surface (lb/ft).

In most problems of mtroductory fluid mechanics, surface tension is not of particular
importance. Table 1C gives values of surface temsion o (sigma) for water in contact
with air. ~

CAPILLARITY

The rise or fall of a liquid in a capillary tube (or in some equivalent circumstance,
such as in porous media) is caused by surface tension and depends on the relative mag-
nitudes of the cohesion of the liquid and the adhesion of the liquid to the walls of the
containing vessel. Liquids rise in tubes they wet (adhesion > cohesion) and fall in tubes
‘they do not wet (cohesion > adhesion). Capillarity is important when using tubes smaller
than about £ inch in diameter. :

FLUID PRESSURE

Fluid pressure is transmitted with equal intensity in all directions and acts normal
to any plane. In the same horizontal plane the pressure intensities in a liquid are equal.
Measurements of unit pressures are accomplished by using various forms of gages. Unless
otherwise stated, gage or relative pressures will be used throughout this book Gage
pressures represent values above or below atmospheric pressure.

UNIT PRESSURE or PRESSURE is éxpressed as force divided by area. In general,

: o dP (Ib
p (Ib/ft? or psf) = d_A_%

For conditions where force P is uniformly distributed over an area, we have

o i i)
Agey vl ? (Podho = iney

DIFFERENCE in- PRESSURE
Difference in pressure between any two points at different levels in a liquid is given by
p2—p1 = w(ha— ki) in psf (7)

where w = unit weight of the liquid (Ib/ft®) and hs—hi = difference in elevation (ft).

If point 1 is in the free surface of the liquid and & is positive downward, the above
equation becomes . :
p = wh (in psf gage) (8)

To obtain the lb/in? pressure unit, We use

, _ D wh : i
¥ =.q9m F 143 (in psi gage) . (9)

These equations are applicable as long as w is constant (or varies so slightly with &
as to cause no significant error in the result).
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‘ PRESQURE VARIATIONS in a COMPRESSIBLE FLUID

Pressure varlatxons in.a compressuble fluid are usually very small because of the small
unit weights and the small differences of elevation being considered in hydraulic calcula-
tions. Where such differences must be recognized for small changes in elevation dh the
,law of pressure variation may be wrltten

dp = —wdh. . o)

L

The negative sign indicates that the pressure decreases as the altitude mcreases, with h
positive upward. For applications, see Problems 29-31. ;

’

PRESSURE HEAD h

Pressure head % represents the height of a column of homogeneous ﬂuld that w111
produce a given intensity of pressure. Then '
h p (Ib/ft?)

h (£t of fluid)” = o 10/ (11)

BULK MODULUS of ELASTICITY (E) .

The bulk modulus of elasticity (E) expresses the compresmblhty of a ﬂuld It i_s'the v
ratio of the change in unit pressure to the corresponding volume change per unit of volume.
dp’ 1b/in2

B = = — = in2 . 79\
B = Zomw = fwge = 0 -, ALE)

<

COMPRESSION of GASES

Compression of gases may occur according. to vari:)_us laws of themodynamics. For
the same mass of gas subjected to twodifferent conditions,

2

Py P2¥2 y4! _ P2 _ ‘ ]
" T1 . T. WR paid ’MJ1T1 . w2eTs >t o (13)
p = absolute pressure in lb/ft?, v = volume in ft3, "W = weight in 1b,

w = specific weight in Ib/ft}, R = gas constant in ft/degree Rankine,

T = absolute temperature in degrees Rankine (460 + °F):

where

FOR ISOTHERMAL CONDITIONS (constant température) the above expression (13)
becomes . .

, TR e s

pwr = P2 and W; = ;)—; = constant o (1{,)

»

Also, : s Bulk Modulus E = p (in psf) (15)

FOR ADIABATIC or ISENTROPIC CONDITIONS (no heat exchanged) the above ex-
pressions become .

Pt = pavk : w')" o= ——1 = constant - (18)
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g A}sq__ G i - | ( )(k D/k ‘ (17)

fi R * Bulk Modulus B = kp (in psf) (18)

where k is the ratxo of the specific heat at constant pressure to the speclﬁc heat at constant
volume It is known as the adiabatic exponent.

‘Table 1A in the Appendix lists some typical values of R and k. For many gases,
R times molecular weight is about 1544.

PRESSURE DISTURBANCES A vim
Pressure disturbances imposed on a fluid move in waves. These pressure waves move
at a velomty equal to that of sound through the fluid. The velocity, or celerity, in ft/sec

is expressed as
= VE/p . (19)

. where E must be in lb/ft2. For gases, this acoustic velocity is

¢'= Vinl = VEGRT o

Solved Problems

1. ‘Calculat.e the specific weight w, specific volume v; and density p of methane at 100°F
.. and 120 psi absolute.
' Solutlon )
' From Table’ lA in the Appendxx, R=963.

. x E
-Specxﬂc weightw = = 10 . = 0.321 Ib/ft?

RT . 96.3(460 + 100)
NPT (RTRATRY Sl I
Specific volume vs = - = osml - 3.11 ft2/1b
o _w  _: 0321 _ A 3
_ Denslty p = o ——32. 2 .0999‘7 slugs/ft

2. If 200 ft3 of oil welghs 10, 520 lb calculabe lts speclﬂc welght w, denmty I3 and specific
grav1ty :

~ Solution:, ' R e b ’ <
! ' " 10,520 1b : :
) . . s o el ] T R i
; Spgclﬁcbwe_ligj‘htw T200FE i 52,6 lbﬁ:_ ,
—— W _ B2.6lb/ftt s
Densityp = PR T ft/sect = ‘1.63 slugs/ft
: * . , A
 Specificgravity = <o = BZEIIE. _ gg.4

Wwer - G2AID/EE
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3.

6.

At 90°F and 30.0 psi ‘absolute the specific volume v; of a certain gas was 11.4 ft%/lb.
Determine the.gas constant E and the density p.

Solution:
. p p pv. _ (30.0 X 144)(11.4)
=== 1 R = — = - s 7 = 5.
Since w RT het wT T (460 + 90) i
Densityp = %)- = 12‘”’ = 1 = —-———1-—— = .00272 slugs/ft’.

veg  11.4x322

(a) Find the change in volume of 1.00 ft3 of water at 80°F when subjected to a pressure
increase of 300 psi. (b) From the following test data determine the bulk modulus
of elasticity of water: at 500 psi the volume was 1.000 ft* and at 3500 psi the volume
was 0.990 ft3.
Solution:
(@) From Table 1C in the Appendix, E at 80°F is 325,000 psi. Using formula (12),

_vdp _1.00 X 300

— — - o — 3
dv = E 325,000 .00092 ft

(b) The definition associated with formula (12) indicates that corresponding changes in pressure and
volume must be considered. Here an increase in pressure corresponds to a decrease in volume.
>
_dp’ _ _ __ (3500—509)"
dv/v (0.990 — 1.004)/1.000

E = 38X 10°psi

A cylinder contains 12.5 ft? of air at 120°F and 40 psi absolute. The air is compressed
to 2.50 ft3. (a) Assuming isothermal conditions, what is the pressure at the new volume
and what is the bulk modulus of elasticity? (b) Assuming adiabatic conditions, what
is the final pressure and temperature and what is the bulk modulus of elasticity?
Solution:
(a) For isothermal conditions, P1V1 = P22

Then (40 X 144)12.56 = (p2’ X 144)2.50 and p:’ = 200 psi absolute

The bulk modulus E = p’ = 200 psi.

(b) For adiabatic conditions, p.,v'x‘ = p.v5 and Table 1A in the Appendix gives k = 1.40.
Then (40 X 144)(12.5)'%° = (ps’ X 144)(2.50)** and p: = 381 psi absolute

The final temperature is obtained by using equation (17):

T,

- T 381
= (Byw-vr, 2o = (55)%,  T: = 1105° Rankine = 645°F
T P1

(460 + 120) 40
The bulk modulus E = kp’ = 1.40 X 3881 = 533 psi.

From the International Critical Tables, the viscosity of water at 20°C (68°F) is .01008
poises. Compute (@) the absolute viscosity in 1b sec/ft? units.  (b) If the specific gravity
at 20°C is 0.998, compute the value of the kinematic viscosity in ft?/s.:c units.
Solution: ‘ ; ; o : ‘
The poise is measured in dyne sec/ecm®. Since 11b = 444,800 dynes and 1ft = 30.48cm, we
obtain :

1b see 444,800 dyne sec

1 e (30.48 cm)? = 478.7 poises
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(@) winlbsec/ft* = .01008/478.7 = 2.11 X 1073

' -5 : R
() sintitfsee = £ = K a0 _ 2IIXI0TXIBE . yogrik food
o w/g w 0.998 X 62.4

Convert 15.14 poises to kinematic viscosity in ft?/sec units if the liquid has specific
gravity 0.964.

Solution:
The steps illustrated in Problem 6 may be taken or an additional - facbor may be establlshed for
e | 32.2. g 15.14 X .001078
ter f —— X —= = ,001078. 2 = APait LI L 0160
water from Y PP 078. Hence » in ft?/sec sper = 0.964 0169.

Convert a viscosity of 510 Saybolt seconds at 60°F to kinematic viscosity v in ft”/sec
units.
Solution:

Two sets of formulas are given to establish this conversion when the Saybolt Umve‘sal Vis-
cosimeter is used: .

(.00226¢ — 1.95/t) X sp gr
(.00220t — 1.35/t) X spgr

(.00226¢ - 1,95/t)
(.00220¢ — 1.35/t)

(@) fort<100, uin poises
for ¢ >100, uin poises

{1

(b) fort<100, »instokes
for t> 100, - »in stokes

where t = Saybolt second umts To convert stokes (cm?/sec) to ft’/sec units, d1v1de by (30 .48)* or 929.
1.36 1

Using grou;\ (b), and since ¢t>100, » = (.oozzox Mo~ e 001205 £t*/sec.
Discuss the shear characteristics of the ;
fluids for which the curves have been A i ey
drawn in Fig. 1-2. REAL BoLib
Solution:

(a) The Newtonian fluids behave according to

the law 7 = u(dV/dy), or the shear stress is

. proportional to the velocity gradient or

rate of shearing strain. Thus for these
fluids the plotting of shear stress against -

velocity gradient is a straight line passing

through the origin. The slope of the hne

FLUID
determines the viscosity. NEWTONIAN

IDEAL FLUID
(b) For the “ideal” fluid, the ‘resistance to ) Velocity Gradient &Y . .
shearing deformation is zero, and hence the ; . d
plotting coincides with the z-axis. While no
ideal fluids exist, in certain analyses the
assumption of an ideal fluid is useful and
justified.

Viscous Shear Stress r —p

Fig.1-2

(¢) For the “ideal” or elastic solid, no deformation Wil'l‘ occur under any loading condition, and.the
plotting coincides with the y-axis. Real solids have some deformation and, within the proportional
limit (Hooke’s law), the plotting is a straight line which is almost vertical.

(d) Non-Newtonian fluids deform in such a way that shear stress is not proportional to rate of ‘shear-
ing deformation, except perhaps at very low shear stresses. The deformation of these fluids might
be classified as plastic. §

(e) The “ideal” plastic material could sustain a certain amount of shearing stress without deformation,
and thereafter it would deform in proportion to the shearing stress. :

’




