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Preface

The rapid progress in cognitive science during the past decade is intimately
linked to three exciting and particularly active areas of research:
computational and quantitative modeling of cognition, advances in the
neurosciences, and the emphasis on Bayesian techniques as a tool to describe
human behavior and to analyze data. Each of those areas is sufficiently broad to
fill (at least one) textbook. This volume therefore focuses exclusively on cognitive
modeling: We do not consider current research in the neurosciences or Bayesian
techniques for data analysis and modeling because we cannot do justice to those
additional topics in a single volume. Instead, this book is best considered an
introductory stepping stone for further reading: Many of the issues discussed in
this book constitute basic knowledge for the Bayesian data analyst and modeler.

What do you need to read this book? We have aimed this volume at an audience
with only a limited background in mathematics. For example, we expect you to
know the difference between a scalar, a vector, and a matrix, but we do not expect
you to be an expert in matrix algebra.

In addition, we rely throughout on MATLAB to illustrate the core concepts with
programming examples. If you want to follow those examples—and we strongly
recommend that you do—then you will need access to MATLAB, and you need
some prior knowledge of how to program in that language. If you have no back-
ground at all in programming, then you need to acquire some basic skills before you
can tackle this book. Computational modeling, after all, involves computing.

Our intention was to write a book that would allow a Jjunior Ph.D. student or a
researcher without background in modeling to begin to acquire the skills necessary
for cognitive modeling. Similarly, this book is suitable for use in an advanced
undergraduate course on modeling if accompanied by suitable tuition. We also
expect that many experts may find it a useful reference guide; however, to do jus-
tice to our primary intended target audience, there are many issues that we— reluc-
tantly—had to omit from this volume. Accordingly, we have not covered such
topics as Bayesian parameter estimation or multilevel modelling. Applying the
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X Computational Modeling in Cognition

Pareto principle, we believe that 80% of our readership will be interested in 20% of
the field—and so we focused on making those 20% particularly accessible.

There are several ways in which this book can be used and perused. The order
of our chapters is dictated by logic, and we thus present basic modeling tools
before turning to model selection and so on. However, the chapters can be read in
a number of different orders, depending on one’s background and intentions.

For example, readers with very little background in modeling may wish to begin
by reading Chapters 1, 2, and 3, followed by the first part of Chapter 7 and all of
Chapter 8. Then, you may wish to go back and read Chapters 4, 5, and 6. In con-
trast, if this book is used for formal tuition in a course, then we suggest that the
chapters be assigned in the order in which they are presented; in our experience, this
order follows the most logical progression in which the knowledge is presented.

This project would not have been possible without support and assistance from
many sources. We are particularly grateful to Klaus Oberauer, John Dunn, E.-J.
Wagenmakers, Jeff Rouder, Lael Schooler, and Roger Ratcliff for comments and
clarifications on parts of this book.

—Stephan Lewandowsky
—Simon Farrell

Perth and Bristol,

April 2010



Contents

Preface

1. Introduction

1.1
1.2
1.3

1.4

1:5

1.6

Models and Theories in Science
Why Quantitative Modeling?
Quantitative Modeling in Cognition
1.3.1 Models and Data

1.3.2 From Ideas to Models

1.3.3 Summary

The Ideas Underlying Modeling and Its
Distinct Applications

1.4.1 Elements of Models

1.4.2 Data Description

1.4.3 Process Characterization

1.4.4 Process Explanation

1.4.5 Classes of Models

What Can We Expect From Models?
1.5.1 Classification of Phenomena
1.5.2 Emergence of Understanding
1.5.3 Exploration of Implications
Potential Problems

1.6.1 Scope and Testability

1.6.2 Identification and Truth

2. From Words to Models: Building a Toolkit

2.1

2.2

Working Memory

2.1.1 The Phonological Loop

2.1.2 Theoretical Accounts of the Word Length Effect
The Phonological Loop: 144 Models of Working Memory
2.2.1 Decay Process

2.2.2 Recall Process

2.2.3 Rehearsal

ix

S 00 W W W =

10

11
16
19
25
25
25
26
27
28
28
32

35

35
36
37

40
41
41



2:3

24

2.5

2.6

Building a Simulation

2.3.1 MATLAB

2.3.2 The Target Methodology

2.3.3 Setting Up the Simulation

2.3.4 Some Unanticipated Results

2.3.5 Variability in Decay

What Can We Learn From These Simulations?

2.4.1 The Phonological Loop Model Instantiated

2.4.2 Testability and Falsifiability

2.4.3 Revisiting Model Design: Foundational Decisions
The Basic Toolkit

2.5.1 Parameters

2.5.2 Discrepancy Function

2.5.3 Parameter Estimation and Model-Fitting Techniques
Models and Data: Sufficiency and Explanation

2.6.1 Sufficiency of a Model

2.6.2 Verisimilitude Versus Truth

2.6.3 The Nature of Explanations

. Basic Parameter Estimation Techniques

3.1

3.2

Fitting Models to Data: Parameter Estimation

3.1.1 Visualizing Modeling

3.1.2 An Example

3.1.3 Inside the Box: Parameter Estimation Techniques
Considering the Data: What Level of Analysis?

3.2.1 Implications of Averaging

3.2.2 Fitting Individual Participants

3.2.3 Fitting Subgroups of Data

3.2.4 Fitting Aggregate Data

3.2.5 Having Your Cake and Eating It: Multilevel Modeling
3.2.6 Recommendations

. Maximum Likelihood Estimation

4.1

4.2

Basics of Probabilities

4.1.1 Defining Probability

4.1.2 Properties of Probabilities

4.1.3 Probability Functions

What Is a Likelihood?

4.2.1 Inverse Probability and Likelihood

4.3 Defining a Probability Function

4.3.1 Probability Functions Specified by the
Psychological Model
4.3.2 Probability Functions via Data Models

42
42
43
44
49
51
53
53
54
55
56
57
61
63
64
65
67
68

71

71
72
74
82
96
97

100

103

103

104

105

109

110
110
111
112
117
124
125

126
127



4.3.3 Two Types of Probability Functions
4.3.4 Extending the Data Model
4.3.5 Extension to Multiple Data Points and
Multiple Parameters
4.4 Finding the Maximum Likelihood
4.5 Maximum Likelihood Estimation for Multiple Participants
4.5.1 Estimation for Individual Participants
4.5.2 Estimating a Single Set of Parameters
4.6 Properties of Maximum Likelihood Estimators

. Parameter Uncertainty and Model Comparison

5.1 Error on Maximum Likelihood Estimates
5.1.1 Standard Errors Across Participants
5.1.2 Curvature of the Likelihood Surface
5.1.3 Bootstrapping
5.1.4 What Do Confidence Limits Tell Us?
5.2 Introduction to Model Selection
5.3 The Likelihood Ratio Test
5.4 Information Criteria and Model Comparison
5.4.1 Kullback-Leibler Distance and Akaike’s
Information Criterion
5.4.2 Bayesian Information Criterion
5.4.3 Model Comparison With the AIC and BIC
5.4.4 An Example of Model Comparison Using
AIC and BIC
5.4.5 Choosing Between AIC and BIC
5.5 Conclusion

. Not Everything That Fits Is Gold: Interpreting the Modeling

6.1 Psychological Data and the Very Bad Good Fit
6.1.1 Overfitting
6.1.2 Generalizability Versus Goodness of Fit
6.2 Parameter Identifiability and Model Testability
6.2.1 Identifiability
6.2.2 Testability
6.2.3 Putting It All Together: Deciding the
Identifiability and Testability of a Model
6.2.4 Models That Are Identifiable but Not Testable
6.3 Drawing Lessons and Conclusions From Modeling
6.3.1 Explorations of a Model: Effects of Parameters
6.3.2 Demonstrations of Sufficiency
6.3.3 Demonstrations of Necessity
6.3.4 Summary

132
133

136
138
142
143
143
145

149

150
150
153
163
170
170
177
179

179
183
184

189
191
192

197

198
198
200
204
205
211

212
213
219
220
222
226
232



7. Drawing It All Together: Two Examples

7.1

T2

73

WITNESS: Simulating Eyewitness Identification

7.1.1 WITNESS: Architecture

7.1.2 WITNESS and Verbal Overshadowing

7.1.3 WITNESS in MATLAB

7.1.4 WITNESS Simulation Results

Exemplar Versus Boundary Models: Choosing

Between Candidates

7.2.1 Models of Categorization

7.2.2 A Probabilistic Feedback Experiment

7.2.3 MATLAB Code for ML Parameter Estimation for
GCM, DEM, and GRT

7.2.4 Fitting the Models to Data

7.2.5 What Have We Learned About Categorization?

Conclusion

8. Modeling in a Broader Context

8.1
8.2

8.3

8.4

8.5

Bayesian Theories of Cognition

Neural Networks

8.2.1 Basic Architecture and Operation

8.2.2 Hebbian Models

8.2.3 Backpropagation Models

8.2.4 Summary

Neuroscientific Modeling

8.3.1 The Allure of Neuroscience

8.3.2 The True Promise of Neuroscience

Cognitive Architectures

8.4.1 Cognitive Architectures: Convergence to a Standard

8.4.2 Cognitive Architectures: Successes, Problems,
and Solutions

8.4.3 Marrying Architectures and Neuroscience

8.4.4 Architectures and Models

Conclusion

8.5.1 Memory

8.5.2 Language

8.5.3 Perception and Action

8.5.4 Choice and Decision Making

8.5.5 Identification and Categorization

References
Author Index
Subject Index
About the Authors

235

235
236
238
240
252

257
258
263

265
269
279
281

283

284
288
288
290
293
297
298
299
303
306
307

308
310
311
313
314
314
315
315
316

319
345

353
359



1

Introduction

1.1 Models and Theories in Science

Cognitive scientists seek to understand how the mind works. That is, we want to
describe and predict people’s behavior, and we ultimately wish to explain it, in
the same way that physicists predict the motion of an apple that is dislodged from
its tree (and can accurately describe its downward path) and explain its trajectory
(by appealing to gravity). For example, if you forget someone’s name when you
are distracted seconds after being introduced to her, we would like to know what
cognitive process is responsible for this failure. Was it lack of attention? Forget-
ting over time? Can we know ahead of time whether or not you will remember
that person’s name?

The central thesis of this book is that to answer questions such as these, cogni-
tive scientists must rely on quantitative mathematical models, just like physicists
who research gravity. We suggest that to expand our knowledge of the human
mind, consideration of the data and verbal theorizing are insufficient on their own.

This thesis is best illustrated by considering something that is (just a little)
simpler and more readily understood than the mind. Have a look at the data shown
in Figure 1.1, which represent the position of planets in the night sky over time.

How might one describe this peculiar pattern of motion? How would you
explain it? The strange loops in the otherwise consistently curvilinear paths des-
cribe the famous “retrograde motion” of the planets—that is, their propensity to
suddenly reverse direction (viewed against the fixed background of stars) for some
time before resuming their initial path. What explains retrograde motion? It took
more than a thousand years for a satisfactory answer to that question to become
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Figure 1.1 An example of data that defy easy description and explanation without a quan-
titative model.

available, when Copernicus replaced the geocentric Ptolemaic system with a heli-
ocentric model: Today, we know that retrograde motion arises from the fact that
the planets travel at different speeds along their orbits; hence, as Earth “overtakes”
Mars, for example, the red planet will appear to reverse direction as it falls behind
the speeding Earth.

This example permits several conclusions that will be relevant throughout
the remainder of this book. First, the pattern of data shown in Figure 1.1 defies
description and explanation unless one has a model of the underlying process.
It is only with the aid of a model that one can describe and explain planetary
motion, even at a verbal level (readers who doubt this conclusion may wish to
invite friends or colleagues to make sense of the data without knowing their
source).

Second, any model that explains the data is itself unobservable. That is,
although the Copernican model is readily communicated and represented (so
readily, in fact, that we decided to omit the standard figure showing a set of con-
centric circles), it cannot be directly observed. Instead, the model is an abstract
explanatory device that “exists” primarily in the minds of the people who use it to
describe, predict, and explain the data.

Third, there nearly always are several possible models that can explain a given
data set. This point is worth exploring in a bit more detail. The overwhelming
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Figure 1.2 The geocentric model of the solar system developed by Ptolemy. It was the
predominant model for some 1,300 years.

success of the heliocentric model often obscures the fact that, at the time of
Copernicus’s discovery, there existed a moderately successful alternative—
namely, the geocentric model of Ptolemy shown in Figure 1.2. The model
explained retrograde motion by postulating that while orbiting around the Earth,
the planets also circle around a point along their orbit. On the additional, arguably
somewhat inelegant, assumption that the Earth is slightly offset from the center of
the planets’ orbit, this model provides a reasonable account of the data, limiting
the positional discrepancies between predicted and actual locations of, say, Mars
to about 1° (Hoyle, 1974). Why, then, did the heliocentric model so rapidly and
thoroughly replace the Ptolemaic system?'

The answer to this question is quite fascinating and requires that we move
toward a quantitative level of modeling.

1.2 Why Quantitative Modeling?

Conventional wisdom holds that the Copernican model replaced geocentric
notions of the solar system because it provided a better account of the data.



4  Computational Modeling in Cognition

But what does “better” mean? Surely it means that the Copernican system pre-
dicted the motion of planets with less quantitative error—that is, less than the 1°
error for Mars just mentioned—than its Ptolemaic counterpart? Intriguingly, this
conventional wisdom is only partially correct: Yes, the Copernican model pre-
dicted the planets’ motion in latitude better than the Ptolemaic theory, but this
difference was slight compared to the overall success of both models in predict-
ing motion in longitude (Hoyle, 1974). What gave Copernicus the edge, then,
was not “goodness of fit” alone? but also the intrinsic elegance and simplicity
of his model-—compare the Copernican account by a set of concentric circles
with the complexity of Figure 1.2, which only describes the motion of a single
planet.

There is an important lesson to be drawn from this fact: The choice among
competing models—and remember, there are always several to choose from—
inevitably involves an intellectual judgment in addition to quantitative examina-
tion. Of course, the quantitative performance of a model is at least as important as
are its intellectual attributes. Copernicus would not be commemorated today had
the predictions of his model been inferior to those of Ptolemy; it was only because
the two competing models were on an essentially equal quantitative footing that
other intellectual judgments, such as a preference for simplicity over complexity,
came into play.

If the Ptolemaic and Copernican models were quantitatively comparable, why
do we use them to illustrate our central thesis that a purely verbal level of
explanation for natural phenomena is insufficient and that all sciences must seek
explanations at a quantitative level? The answer is contained in the crucial mod-
ification to the heliocentric model offered by Johannes Kepler nearly a century
later. Kepler replaced the circular orbits in the Copernican model by ellipses
with differing eccentricities (or “‘egg-shapedness™) for the various planets. By this
straightforward mathematical modification, Kepler achieved a virtually perfect fit
of the heliocentric model with near-zero quantitative error. There no longer was
any appreciable quantitative discrepancy between the model’s predictions and
the observed paths of planets. Kepler’s model has remained in force essentially
unchanged for more than four centuries.

The acceptance of Kepler’s model permits two related conclusions, one that
is obvious and one that is equally important but perhaps less obvious. First, if
two models are equally simple and elegant (or nearly so), the one that provides
the better quantitative account will be preferred. Second, the predictions of the
Copernican and Keplerian models cannot be differentiated by verbal interpreta-
tion alone. Both models explain retrograde motion by the fact that Earth “over-
takes” some planets during its orbit, and the differentiating feature of the two
models—whether orbits are presumed to be circular or elliptical—does not entail
any differences in predictions that can be appreciated by purely verbal analysis.
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That is, although one can talk about circles and ellipses (e.g., “one is round, the
other one egg shaped”), those verbalizations cannot be turned into testable pre-
dictions: Remember, Kepler reduced the error for Mars from 1° to virtually zero,
and we challenge you to achieve this by verbal means alone.

Let us summarize the points we have made so far:

1. Data never speak for themselves but require a model to be understood and
to be explained.

2. Verbal theorizing alone ultimately cannot substitute for quantitative
analysis.

3. There are always several alternative models that vie for explanation of data,
and we must select among them.

4. Model selection rests on both quantitative evaluation and intellectual and
scholarly judgment.

All of these points will be explored in the remainder of this book. We next
turn our attention from the night sky to the inner workings of our mind, first by
showing that the preceding conclusions apply in full force to cognitive scientists
and then by considering an additional issue that is of particular concern to scholars
of the human mind.

1.3 Quantitative Modeling in Cognition

1.3.1 Models and Data

Let’s try this again: Have a look at the data in Figure 1.3. Does it remind you of
planetary motion? Probably not, but it should be at least equally challenging to
discern a meaningful pattern in this case at it was in the earlier example. Perhaps
the pattern will become recognizable if we tell you about the experiment con-
ducted by Nosofsky (1991) from which these data are taken. In that experiment,
people were trained to classify a small set of cartoon faces into two arbitrary cat-
egories (we might call them the Campbells and the MacDonalds, and members of
the two categories might differ on a set of facial features such as length of nose
and eye separation).

On a subsequent transfer test, people were presented with a larger set of
faces, including those used at training plus a set of new ones. For each face,
people had to make two decisions: which category the face belonged to and the
confidence of that decision (called “classification” in the figure, shown on the
x-axis), and whether or not it had been shown during training (“recognition,” on
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Figure 1.3 Observed recognition scores as a function of observed classification confidence
for the same stimuli (each number identifies a unique stimulus). See text for details. Figure
reprinted from Nosofsky, R. M. (1991). Tests of an exemplar mode for relating perceptual
classification and recognition memory. Journal of Experimental Psychology: Human Per-
ception and Performance, 17, 3-27. Published by the American Psychological Association;
reprinted with permission.

the y-axis). Each data point in the figure, then, represents those two responses,
averaged across participants, for a given face (identified by ID number, which can
be safely ignored). The correlation between those two measures was found to be
r =.36.

Before we move on, see if you can draw some conclusions from the pattern
in Figure 1.3. Do you think that the two tasks have much to do with each other?
Or would you think that classification and recognition are largely unrelated and
that knowledge of one response would tell you very little about what response to
expect on the other task? After all, if »r = .36, then knowledge of one response
reduces uncertainty about the other one by only 13%, leaving a full 87% unex-
plained, right?

Wrong. There is at least one quantitative cognitive model (called the GCM
and described a little later), which can relate those two types of responses with
considerable certainty. This is shown in Figure 1.4, which separates classification
and recognition judgments into two separate panels, each showing the
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Figure 1.4 Observed and predicted classification (left panel) and recognition (right panel).
Predictions are provided by the GCM; see text for details. Perfect prediction is represented
by the diagonal lines. Figure reprinted from Nosofsky, R. M. (1991). Tests of an exemplar
mode for relating perceptual classification and recognition memory. Journal of Experimen-
tal Psychology: Human Perception and Performance, 17, 3-27. Published by the American
Psychological Association; reprinted with permission.

relationship between observed responses (on the y-axis) and the predictions of
the GCM (x-axis). To clarify, each point in Figure 1.3 is shown twice in Fig-
ure 1.4—once in each panel and in each instance plotted as a function of the
predicted response obtained from the model.

The precision of predictions in each panel is remarkable: If the model’s pre-
dictions were absolutely 100% perfect, then all points would fall on the diagonal.
They do not, but they come close (accounting for 96% and 91% of the variance in
classification and recognition, respectively). The fact that these accurate predic-
tions were provided by the same model tells us that classification and recognition
can be understood and related to each other within a common psychological the-
ory. Thus, notwithstanding the low correlation between the two measures, there
is an underlying model that explains how both tasks are related and permits accu-
rate prediction of one response from knowledge of the other. This model will
be presented in detail later in this chapter (Section 1.4.4); for now, it suffices to
acknowledge that the model relies on the comparison between each test stimulus
and all previously encountered exemplars in memory.

The two figures enforce a compelling conclusion: “The initial scatterplot . . .
revealed little relation between classification and recognition performance. At that
limited level of analysis, one might have concluded that there was little in com-
mon between the fundamental processes of classification and recognition. Under



8 Computational Modeling in Cognition

the guidance of the formal model, however, a unified account of these processes is
achieved” (Nosofsky, 1991, p. 9). Exactly paralleling the developments in 16th-
century astronomy, data in contemporary psychology are ultimately only fully
interpretable with the aid of a quantitative model. We can thus reiterate our first
two conclusions from above and confirm that they apply to cognitive psychology
in full force—namely, that data never speak for themselves but require a model to
be understood and to be explained and that verbal theorizing alone cannot sub-
stitute for quantitative analysis. But what about the remaining earlier conclusions
concerning model selection? v

Nosofsky’s (1991) modeling included a comparison between his favored exem-
plar model, whose predictions are shown in Figure 1.4, and an alternative “proto-
type”” model. The details of the two models are not relevant here; it suffices to note
that the prototype model compares a test stimulus to the average of all previously
encountered exemplars, whereas the exemplar model performs the comparison
one by one between the test stimulus and each exemplar and sums the result.?
Nosofsky found that the prototype model provided a less satisfactory account of
the data, explaining only 92% and 87% of the classification and recognition vari-
ance, respectively, or about 5% less than the exemplar model. Hence, the earlier
conclusions about model selection apply in this instance as well: There were sev-
eral alternative models, and the choice between them was based on clear quanti-
tative criteria.

1.3.2 From Ideas to Models

So far, we initiated our discussions with the data and we then ... poof! ... revealed
a quantitative model that spectacularly turned an empirical mystery or mess into
theoretical currency. Let us now invert this process and begin with an idea, that
is, some psychological process that you think might be worthy of exploration and
perhaps even empirical test. Needless to say, we expect you to convert this idea
into a quantitative model. This raises at least two obvious questions: First, how
would one do this? Second, does this process have implications concerning the
role of modeling other than those we have already discussed? These questions are
sufficiently complex to warrant their own chapter (Chapter 2), although we briefly
survey the latter here.

Consider the simple and elegant notion of rehearsal, which is at the heart of
much theorizing in cognition (e.g., A. D. Baddeley, 2003). We have all engaged in
rehearsal, for example, when we try to retain a phone number long enough to enter
it into our SIM cards. Several theorists believe that such subvocal—or sometimes
overt—rehearsal can prevent the “decay” of verbal short-term memory traces,
and introspection suggests that repeated recitation of a phone number is a good
means to avoid forgetting. Perhaps because of the overwhelming intuitive appeal
of the notion and its introspective reality, there have been few if any attempts



