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Preface

My first interest for offshore technology and marine vehicles started during my
“sivilingenigr” (MSc) study at the Department of Marine Systems Design at The
Norwegian Institute of Technology (NIT). This interest was my main motivation
for a doctoral study in Engineering Cybernetics at the Faculty of Electrical Engi-
neering and Computer Sciences (NIT) and my graduate studies in flight control
at the Department of Aeronautics and Astronautics, University of Washington,
Seattle. Consequently, much of the material and inspiration for the book has
evolved from this period. Writing this book, is an attempt to draw the disci-
plines of engineering cybernetics and marine engineering together.

Systems for Guidance and Control have been taught by the author since 1991
for MSc students in Engineering Cybernetics at the Faculty of Electrical Engineer-
ing and Computer Science (NIT). The book is intended as a textbook for senior
and graduate students with some background in control engineering and calculus.
Some basic knowledge of linear and nonlinear control theory, vector analysis and
differential equations is required. The objective of the book is to present and
apply advanced control theory to marine vehicles like remotely operated vehicles
(ROVs), surface ships, high speed crafts and floating offshore structures. The
reason for applying more sophisticated autopilots for steering and dynamic po-
sitioning of marine vehicles is mainly due to fuel economy, improved reliability
and performance enhancement. Since 1973, the rapid increase in oil prices has
contributed to this trend. This justifies the use of more advanced mathematical
models and control theory in guidance and control applications.

Ass. Professor Thor I. Fossen
University of Trondheim

The Norwegian Institute of Technology
Department of Engineering Cybernetics
N-7034 Trondheim, Norway
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Chapter 1

Introduction

The subject of this textbook is guidance and control of ocean vehicles. This title
covers control systems design for all types of marine vehicles like submarines,
torpedoes, unmanned and manned underwater vehicles, conventional ships, high
speed crafts and semi-submersibles. Examples of such systems are:

control systems for forward speed control
autopilots for course-keeping and diving
turning controllers

track-keeping systems

dynamic positioning (DP)

rudder-roll stabilization (RRS)

fin control systems

wave-induced vibration damping

For practical purposes the discussion will concentrate on three vehicle categories:
small unmanned underwater vehicles, surface ships and high speed craft.

Guidance and Control

The terms guidance and control can be defined so that:

GUIDANCE is the action of determining the course, attitude and speed of the

vehicle, relative to some reference frame (usually the earth), to be followed
by the vehicle.

CONTROL is the development and application to a vehicle of appropriate forces

and moments for operating point control, tracking and stabilization. This
involves designing the feedforward and feedback control laws.

The following example will be used to illustrate these definitions:



2 Introduction

Example 1.1 (Automatic Weather Routing)

The design of an automatic weather routing system for a ship requires insight in
both advanced modeling and optimal control theory. Moreover, we need an accu-
rate model of the ship and the environmental forces (wind, waves and currents)
to describe the speed loss of the ship in bad weather. Based on the speed loss
computations we can compute a fuel optimal route. Finally, we have to design an
optimal track-keeping controller (autopilot) to ensure that this route is followed
by the ship.

wind,
waves and
L currents
u T M ke
»| Feedforward - = = ="
control system y Actuators Dynamics Kinematics
Feedback = ,Y,f,','.'ﬁ:f
control system SENIO0F ']
n, 4
Reference | Guidance | Kinematic ==
generator Sensors transformation [

weather
data

Figure 1.1: Guidance and control system for automatic weather routing of ships.

A guidance and control system for automatic weather routing of a ship is shown
in Figure 1.1. This system uses weather data measurements to compute a fuel
optimal route for the ship which is fed forward to the control system through a
block denoted as the “feedforward control system”. In addition to this, feedback is
provided in an optimal manner from velocity v and position/attitude 1 through
the block “feedback control system”. The control force and moment vector T is
provided by the actuator via the control variable w, which may be interpreted as
the sum of the feedforward and feedback control action.

We also notice that the reference generator n, may use weather data & (wind
speed, wind direction, wave height etc.) together with the ship states (v,n) to
compute the optimal route. This is usually done by including constraints for
fuel consumption, actuator saturation, forward speed, restricted areas for ship
maneuvering etc.

O



Introduction 3

An Overview of the Book

This book deals mainly with modeling and control of unmanned untethered un-
derwater vehicles (remotely operated vehicles and autonomous underwater vehi-
cles), surface ships (cargo ships, tankers etc.) and high speed craft (surface effect
ships and foilborne catamarans).

The design of modern marine vehicle guidance and control systems requires
knowledge of a broad field of disciplines. Some of these are vectorial kinemat-
ics and dynamics, hydrodynamics, navigation systems and control theory. To
be able to design a high performance control system it is evident that a good
mathematical model of the vehicle is required for simulation and verification of
the design. As a result of this, the book contains a large number of mathematical
models intended for this purpose. The different topics in the book are organized
according to:

MODELING: marine vehicle kinematics and dynamics in 6 degrees of freedom
(Chapter 2) and environmental disturbances in terms of wind, waves and
currents (Chapter 3).

UNDERWATER VEHICLES: stability and control system design for small un-
manned underwater vehicles (Chapter 4).

SURFACE SHIPS: ship dynamics, stability and maneuvering (Chapter 5) and
ship control system design (Chapter 6).

HiGH SPEED CRAFT: control system design for surface effect ships (SES) and
foilcats (Chapter 7).

It is recommended that one should read Chapter 2 before Chapters 3-7 since
these chapters use basic results from vectorial kinematics and dynamics.






Chapter 2
Modeling of Marine Vehicles

Modeling of marine vehicles involves the study of statics and dynamics. Statics is
concerned with the equilibrium of bodies at rest or moving with constant velocity,
whereas dynamics is concerned with bodies having accelerated motion. Statics is
the oldest of the engineering sciences. In fact, important contributions were made
over 2000 years ago by Archimedes (287-212 BC) who derived the basic law of
hydrostatic buoyancy. This result is the foundation for static stability analyses
of marine vessels.

The study of dynamics started much later since accurate measurements of
time are necessary to perform dynamic experiments. One of the first time-
measuring instruments, a “water clock”, was designed by Leonardo da Vinci
(1452-1519). This simple instrument exploited the fact that the interval between
the falling drops of water could be considered constant. The scientific basis of dy-
namics was provided by Newton’s laws published in 1687. It is common to divide
the study of dynamics into two parts: kinematics, which treats only geometrical
aspects of motion, and kinetics, which is the analysis of the forces causing the
motion.

Table 2.1: Notation used for marine vehicles.

forces and | linear and | positions and

DOF moments | angular vel. | Euler angles
1 motions in the z-direction (surge) X U z
2 motions in the y-direction (sway) Y v Y
3 motions in the z-direction (heave) Z w 2
4 rotation about the z-axis (roll) K P ¢
5 rotation about the y-axis (pitch) M q 0
6 rotation about the z-axis (yaw) N % P

This study discusses the motion of marine vehicles in 6 degrees of freedom
(DOF) since 6 independent coordinates are necessary to determine the position
and orientation of a rigid body. The first three coordinates and their time deriva-
tives correspond to the position and translational motion along the z-, y-, and




