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PREFACE

The ancient alchemists stopped hammering at the iron rod in attempts to
convert it into gold when solid scientific predictions taught them the impossibility
of the task. Much too often, however, it seems that we are behaving in a similar
way in our attempts to make the cell synthesize valuable products for us. To run a
fermentation process is still more of an art than an exact science. We should not be
fooled by the contemporary advances of "biotechnology"; it is based on almost as
empirical and experimental approach as that practiced by the good old alchemist
some three or four centuries ago. It is the power of scientifically based predictions
that leads us to the best results and the optimum process configurations.

It is the true industrial bio-TECHNOLOGY that this book attempts to address,
bringing into it some basic rudimentary methods of process description and
optimization based on the magic of the mathematical equation. This does not mean
that the bio-scientists among us should stop reading at this point. Simple
differential calculus is the backbone of this volume. The concept of mass balancing
is summarized in Part II for those who are not used to this most useful and classical
basic engineering tool. An extensive and descriptive case study of a selected bio-
process in Part III elucidates the concepts of very pragmatic mathematical modeling
of the bioreactor systems outlined in Part I.

While the individual concepts dealt with in this volume are of a rather basic
nature to the specialists in individual areas invoived, it is actually the
interdisciplinary nature of the bioprocess field that presents the challenge. Recent
advances in these individual areas now make it possible to approach the exciting
interdisciplinary task with reasonable confidence. The accumulated knowledge of
bicchemical microbial pathways, and the experience with description and
optimization of chemical reactors, developed in the last three or four decades, is
catalyzed by the contemporary power of small, extremely fast and accessible
computers loaded with software of powerful mathematical routines. The result is a
scientific environment where a qualitative leap can be taken in attempts to quantify
some bio-catalytic processes; the industrial ones being of a special interest.

This volume is meant for those who are dealing with the bio-process
elements in the laboratory or on a large scale. It is meant for the engineer as well as
for the science student, because it is in between the classical fields where the
interdisciplinary challenge is, and where the opportunity beckons. Forget the
traditional boundaries of scientific disciplines you were inoculated with at school
and_enjoy the new world of interdisciplinary excitement. It is the energies of this
excitement that will bring you through this volume and into the new world of
more exact scientific and technological endeavours in biotechnology. It is perhaps
time to prepare to leave the age of (bio)-alchemy. The old saying is that every long
trek starts with the first step. We hope that this book could be your first step.

The Authors.
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PART I

MATHEMATICAL MODELING
OF
MICROBIAL PROCESSES

1. INTRODUCTION

For a proper design and operation of fermentation processes, microbial
ore leaching, biological wastewater treatment, bioconversion of solar energy
by (green) microorganisms, and for other numerous and varied processes
of biotechnology, it is essential to know and to be able to quantitatively
describe the key process variables relevant to the system kinetics. Such
information serves as a basis for deriving an optimal process design and for
developing its optimal operation. While in the chemical reactors the process
kinetics reflects the reaction rates on a molecular level, microbial process
dynamics is a result of relationships between the living microbial cell and
its environment affecting the biochemical-physiological activity of the mi-
crobial population and thus the results of the whole bio-process. Dynamics
and efficiency of the microbial process can be manipulated by the choice of
microbial culture and by the physico-chemical environmental factors. An
optimal bio-process results from combining the best choices in both areas.
Without a suitable microbial strain it is not possible to realize the desired
process and, similarly, by using inappropriate process conditions only very
low product yields can be obtained even when high-production strains are
employed. The methodology of strain selection, its genetic manipulation
and optimization of production parameters has been traditionally based on
very extensive experimental work, diametrically different from the meth-
ods of engineering optimization of a process with regard to its operating
parameters.

Considering extremely high costs of industrial-scale experimentation,
microbial process engineering approach to experimental work can make an
efficient use of laboratory-scale experimentation employing a scaled-down
“model system”. A geometrically scaled-down copy of the process equip-
ment or a sequence of operations can serve as a model to study the process.
This study can be facilitated by developing an analogy of the system, for
instance an electrical analogy, or even a mathematical abstraction (math-
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ematical model) enabling simulation of the behaviour of an actual process
by computations. In most cases, every model represents a certain approx-
imation of the real system and represents a compromise between the high
costs and complexity of experimentation with a real large-scale system and
the ease of carrying out a smaller-scale experimental study.

This text will mainly deal with problems associated with the applica-
tion of mathematical modeling methods as a tool of systems analysis in
the field of biotechnology. The text is divided into major sections dealing
respectively with the methodology of composing mathematical models of
bioreactor performance, the types of material balances pertaining to the
bioreactor system and, eventually, elaborating on the principles discussed,
there is a comprehensive case study where different bioreactor arrangements
are modelled and computer simulation of their performance demonstrated.
Numerous examples and problems solved throughout the text make the
comprehension of the concepts dealt with easier to understand and absorb.

The text has been prepared with broad and interdisciplinary reader-
ship in mind. The process engineer will find the concepts more familiar,
however, his biochemical and microbiological background has to have been
sufficiently developed. The biologist, on the other hand, needs to have ba-
sic preparation in integral and differential calculus and the section on mass
balances will smooth his entry into the basic area of mathematical model-
ing of biosystems. In either case, open minded interdisciplinary curiosity,
pragmatic approach and unsuppressible desire to be at the “cutting edge”
of the contemporary development in new and rapidly expanding areas of
biotechnology are the basic requisites for enjoying this text which is to as-
sist in further development and application of the powerful methodology
for study and optimization of bioreactor systems in the laboratory as well
as in large-scale operation. After all, it is the technology component which
is to ultimately fulfill the promises and expectations of the fascinating, new
and highly interdisciplinary field of biotechnology.



2. SYSTEMS ANALYSIS APPROACH TO
THE MATHEMATICAL MODELING OF
FERMENTATION PROCESSES

Systems analysis is a basic method for description of complex phenomena
and interactions among observed variables in the process under study’’. The
unified strategy for analysis of an arbitrary process determines the strategy
for process optimization. By the process systems analysis we refer to the
application of scientific methods to the recognition and definition of process-
related problems and the development of procedures for their solution. In
practice, for a fermentation process system, this approach is represented by
several basic steps:

a) mathematical specification of the problem for the given physicochemical,
biochemical and physiological conditions;

b) detailed strategy development resulting in obtaining adequate mathe-
matical model(s) representing the given process;

c) synthesis of results and design of the optimization strategy for process
control.

The biological process denotes an actual series of operations and inter-
actions of non-living materials with living matter. Figure 2.1 presents a
simplified summary of interactions and links between “microbial process
engineering” and other science branches.

[ Physiology i

i‘r General Biology 1 ! - general |

| i - special ;

| Genetics Biochemistry | | - comparative |

MICROBIAL
PROCESS
ENGINEERING |
A |

Mat atics |
[ Computer Science - functional analysis i

Physics | i - software - differential calculus

| Physical Chemistry - control - numerical analysis

L Biophysics J l - expert systems - etc.

Figure 2.1: The place of "Microbial Process Engineering”
among the established science disciplines

Process engineering mostly deals with observed macroscopic kinetics and
stoichiometry of biological processes. The kinetics and stoichiometry are
based on physiological studies but the theoretical background is developed
from enzyme kinetics, metabolic pathways and sometimes on the basis of
genetic laws.
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The process system state variable is the quantity which can represent an
imaginary coordinate in the "state space”. Such variables can be determined
either by direct measurement (biomass concentration, temperature, pH, etc.) or
it can be of an indirect nature. That means that its value is calculated frem
other measured variables (yield coefficient, RQ, specific growth rate, etc.).

The state of the system is determined by the set of system variables and
their corresponding respective rates of changes. Process parameter is a
property of the system or its environment that can be assigned arbitrary
numerical or linguistic values; also it is a constant or a coefficient in an equation
often based on and derived from some assumption such as "ideally mixed",
"normal behaviour", "loss of viability", etc.

Simulation is the study of the system or its part(s) by manipuiation of its
mathematical representation or its usually smaller physical model.

Process analysis involves an examination of the overall process,
alternative technological variants and also eventually their economics. There
are two main tests in the biotechnological industry with which engineers are
ultimately concerned: the optimal operation of an existing plant and the design
of new or modified technologies. In the area of operations, both control and
optimization of the system performance stand out as two of the main functions
of great concern to the process engineer. From a general viewpoint, systems
analysis and process simulation have the following benefits:

A) Extrapolation. With a suitable mathematical model it is possible to test extreme
ranges of operating conditions and also it is possible to establish critical
patterns in the performance of the real process.

B) Study of commutability and evaluation of alternative policies. New factors
(such as use of immobilized cell reactor, or novel bioreactor design) or
elements of process equipment can be introduced and old ones removed while
the system is examined to see if these changes are compatible. Simulation
makes it possible to compare various proposed designs and processes not yet
in operation and to test hypotheses about systems or processes before acting (as
in the case of the continuous-flow cell retention fermentor with bleeding of
the whole broth).

C) Replication of experiments by simulation makes it possible to study the effect of
changes of system variables and process parameters.

D) Test of sensitivity and system stability to disturbances in basic process
parameters can be examined.

E) Optimal control and economic experimentation can be studied leading to the
optimal process design quickly and economically. A study of this sort with a
real plant would be extremely risky, expensive and cumbersome involving
costly large scale experimentation and design changes.
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Figure 2.2: The value of approximation by the mathematical model (a) increases with
its complexity. The cosis of solution (computation) (b) have been
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Figure 2.3: Model usefulness as a function of the number of phenomenclogical laws and time.
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\odeling is the process in which the analyst constructs a set of math-
ematical relationships together with boundary and initial conditions that
are isomorphic to relationships among the process variables. Because of the
complexity of the real process (physico-chemical, physiological, biochemi-
cal and genetic laws) and the mathematical limitations, whatever model
is ducloped is bound to be highly idealized and generally gives a faith-
ful representation of only a few of the properties of the process. The first
model is often a simple version of the mass conservation law. On the basis
of this model the analyst usually attempts to detect its principal deficien-
cies. Several models are usually composed before one is established that
satisfactorily represents those particular attributes of the process that are
of interest. The typical error of all beginners in model building is that they
try to include all available information in the model and the product of this
effort is a “monster” which is difficult to use in process simulation. The
model formulation has to be a compromise between reasonable complexity
and desired economy of the solution.

Figure 2.2 compares the approximation ability of the model given by
the number of used phenomenological laws and the cost of solution. If no
phenomenological law is used in model building the “black box” approach
is used for description of the system behaviour. The extrapolation ability
of such model is very low. When only the physico-chemical laws were ap-
plied, the model could represent an optimal compromise in the era of the
mid-seventies. Because of the lowering of cost of model solution by a new
generation of software and hardware, the new generation of “physiological
oriented” models represent the top of optimal model designs in the eighties.
It is clear that further inclusion of genetic, biochemical and biophysical laws
(eg. quantum biochemistry and molecular mechanics of protein action) will
be in the center of interest of model designers in the upcoming era where the
decrease in the cost of solving the model equations will be coupled with the
application of multiprocessor “supercomputers” in scientific research. This
will allow the design of new efficient algorithms which will make the solution
of quantum biochemistry and biophysics problems of microbial physiology
possible.

Figure 2.3 outlines the dependence of model usefulness (approximation
ability of model vs. cost of model solution) as a function of the number
of phenomenological laws and time. In Figure 2.3, the top of the curve in
1970 represents the class of models based on the idea of Monod model for
microbial growth and production. The top of the curve in 1980 represents
the generation of models with distributed parameters for modeling of tower
fermentors, immobilized cells and enzyme reactors, etc. The top in 1990 can
be achieved when physiological laws of macroscopic control of physiological
functions will be applied. The top of usefulness at the end of the century

means the implantation of othe, Lilligicul lvwe vu dilliicuy icvers oI the
system in simulation models.
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The conversion of raw starting materials into valuable products taking
place in a biochemical system can be enclosed in a technological system of
a bioreactor where most often living microbial cells represent the biological
catalytic conversion device’.

The degree of the overall complexity of a microbially catalyzed process
is determined by the complexity of mutual relationships and interactions
of the environment and the structured live matter while growing, utilizing
and accumulating microbial metabolites. An appropriate mathematical de-
scription necessary for composition of a mathematical model has to respect
the most important of these relationships and interactions. In case of com-
plex systems, the systems analysis methodology recommends a break-down
of these systems into individual sub-systems interconnected by well defined
relationships which for microbial systems are usually determined by mass
and energy transfer rates between individual sub-systems.

In contrast to technical systems where the subsystems are dimensionally
comparable, in microbial processes this arrangement is hierarchical, thus,
several subsystems on a certain hierarchical level make up a new subsystem
on a higher hierarchical level. Figure 2.4 shows a possible alternative of
breaking down a microbial process according to the hierarchical principle
given by more or less natural boundaries. In the following paragraphs indi-
vidual hierarchical levels, which could be distinguished in microbial systems,
are briefly discussed.

Hierarchical Levels in Microbial Systems

(I) The first hierarchical level is represented by subsystems concerning
molecular or enzyme-catalyzed reactions. This group of subsystems includes
all simple catabolic and anabolic reactions, reactions concerning material
transport across the cell membrane, also synthesis and decomposition rates
of macromolecules involved in catalytic activity, information transfer, en-
ergy storage, or those macromolecules having an important structural role.
Connections among individual subsystems are determined by the reaction
stoichiometry, mathematically usually expressed by the stoichiometric ma-
trix of the reaction scheme. Mathematical models composed on this level,
however, are very complex and rarely used. They are mainly encountered in
basit research in the fields of biophysics, pharmacokinetics and metabolic
disorders. For formulation of mathematical models concerning fermenta-
tion processes it is usually assumed that a certain subsystem determined
by a reaction sequence between one state and another can be described with
adequate accuracy by simplified kinetics based on rigidity or stoichiometric
relationships and on the principle of a “bottleneck”. These are the reasons
why models af fermant-*iny processes are usually derived from subsystems
on a second hierarchical level.
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Figure 2.4: A scheme of a fermentation process break-down by a systems analysis method.
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(ITI) The second hierarchical level is characterized by individual parts
of metabolism, such as glycolysis, proteosynthesis, substrate transport, etc.,
being perceived as subsystems making up a complex which reacts to the
outside perturbance by changing the rates of growth, substrate utilization
and product formation. Models of microbial growth on this level may be
represented by either one or several metabolic subsystems. Harder and
Roels™ in their review addressed the question of usefulness of dividing the
growth model into a certain number of subsystems. They showed that the
number of subsystems in the model depends on the length of relaxation
times given by the rates of diffusion (10_5 - 107" s), of enzymatic reactions
under allosteric control (107" — 10's), of RNA synthesis (10 — 10° s), and also
by the reaction times concerning the changes in enzymatic concentrations
in the cell (10° — 10° 5). Considering that rates of diffusion fluxes are

from the evolutionary standpoint, according to Snoll™, counterbalanced
by the enzymatic activity under allosteric control, it is possible to include
these mechanisms, from the systems analysis standpoint, in one type of
subsystems. The overall effect is that for a complete description of the
dynamic response of the culture growth to outside perturbances it is quite
adequatg) to use growth models consisting of three dynamically different
systems .

The three dynamic subsystems differ in relaxation times, i.e., in the
dynamics of simple reactions, in the dynamics of RNA synthesis, and in
changes of enzymatic concentrations. The dynamic subsystem of RNA syn-
thesis is particularly expressed in transient phases of fermentation, usually
in a negative sense as exemplified by the lag phase following inoculation.
This effect can be at least partially eliminated by an appropriate prepa-
ration of inoculum which is reflected in a model simplified to only one or
two subsystems. A non-structural process description by a mathematical
model can be used for shorter cultivations when the enzyme concentration
can be considered as constant and the growth dynamics is practically de-
pendent on the kinetics of simple reactions connected with catabolism. The
non-structural description of the growth dynamics is the most frequent one
even though it is not methodologically quite appropriate when used in the
transfer of a process from a batch to a continuous-flow culture regime where
the long-term changes in culture dynamics may be particularly pronounced
in the elemental composition of microbial biomass as well as in enzyme con-
centrations and metabolic activity of the culture. The use of growth models
segregated into several subsystems is, from the systems analysis point of
view, an essential means for description of the dynamics of adaptation and
selection having an influence on enzymatic composition and metabolic ac-
tivity in cultivations with long retention times. When modeling cultivations
with short retention times the most important aspect is represented by the
requirement for simplicity of the mathematical description leading usually
to a non-structured mathematical growth model. Apart from the growth
dynamics, the model should also include the dynamics of the environment
which is an equally important non-living part of the microbial culture.
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(III) The third hierarchical level in composing a model of a fermen-
tation process is reflected in modeling of mutual relationships and links
between or among microbial strains in mixed population cultivations of the
predatory nature when one species serves as a “substrate” for another, or
when two species on the same trophic level compete for the same substrate.
Modeling of relationships between morphologically different individuals of
the same species or those who differ in age also belongs in this category. It
is also necessary at this stage to elucidate the effect of growth in colonies or
aggregates on the overall growth rate. In practice, these problems are en-
countered when dealing with phenomena taking place in microbial colonies,
microbial films or other natural or artificial aggregates such as cells immo-
bilized in gels or pellets produced by higher microorganisms. These aspects
are described in more detail by Ramkrishna®™ or Atkinson’. The use of
this modeling level is justified only in cases where the above mentioned
phenomena affect the overall production rate as the case may be in reac-
tors with immobilized cells, with biological wastewater treatment systems,
or with production of certain metabolites in reactors containing purposely
cultivated microbial pellets. The segregated models, when compared to
non-segregated ones, are considerably more complex and more difficult to
solve which makes their use in fermentation technology rather limited to
cases when the level of production depends significantly on the age distribu-
tion of individuals comprising the culture. These types of models are very
significant, however, in the case of systems analysis applied to complex sys-
tems because they enable a sensitive simulation of conditions for ecological
equilibrium and stability of microbial subsystems in natural environments.
These problems are closely related with applications of the fourth level of
modeling which then also incorporates system dynamics and properties of
the environment.

(IV) The fourth hierarchical level in modeling microbial system is
characterized by linking the overall microbial growth and production rates
with the dynamic balance of the environment distributed in space with all
the attributes of the microbial environment such as kinetics of mixing, heat
and mass transfer together with boundary conditions characterizing the in-
tensity of mass and energy exchange with other subsystems, i.e. operations
comprising the entire fermentation production process including medium
preparation and product recovery.

When formulating a model of a microbial process, feasibility is a guiding
principle. A very frequent mistake committed by those with little experi-
ence in this field is creation of a very complex model including different
approaches available in the literature, disregarding their relevance to the
overall goal which should always be the simplest and yet adequately accu-
rate way of describing the real process which would enable its simulation by
calculations. Such a model can then be conveniently used for the prediction
of optimal operating conditions of a technological process as a whole.



