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Preface

This book stems in part from courses taught at the University of Ken-
tucky and at the University of Wisconsin—Madison on programming lan-
guage design. There are many good books that deal with the subject at
an undergraduate level, but there are few that are suitable for a one-
semester graduate-level course. This book is my attempt to fill that gap.

The goal of this course, and hence of this book, 1s to expose first-year
graduate students to a wide range of programming language paradigms
and issues, so that they can understand the literature on programming
languages and even conduct research in this field. It should improve the
students’ appreciation of the art of designing programming languages
and, to a limited degree, their skill in programming.

This book does not focus on any one language, or even on a few lan-
cguages; it mentions, at least in passing, over seventy languages, includ-
ing well-known ones (Algol, Pascal, C, C++, LISP, Ada, FORTRAN),
important but less known ones (ML, SR, Modula-3, SNOBOL), signifi-
cant research languages (CLU, Alphard, Linda), and little-known lan-
guages with important concepts (Io, Godel). Several languages are
discussed in some depth, primarily to reinforce particular programming
paradigms. ML and LISP demonstrate functional programming,
Smalltalk and C++ demonstrate object-oriented programming, and Pro-
log demonstrates logic programming.

Students are expected to have taken an undergraduate course in pro-
gramming languages before using this book. The first chapter includes
a review of much of the material on imperative programming languages
that would be covered in such a course. This review makes the book
self-contained, and also makes it accessible to advanced undergraduate
students.

Most textbooks on programming languages cover the well-trodden ar-
eas of the field. In contrast, this book tries to go beyond the standard
territory, making brief forays into regions that are under current re-
search or that have been proposed and even rejected in the past. There
are many fascinating constructs that appear in very few, if any, produc-
tion programming languages. Some (like power loops) should most
likely not be included in a programming language. Others (like Io con-
tinuations) are so strange that it is not clear how to program with them.
Some (APL arrays) show alternative ways to structure languages.
These unusual ideas are important even though they do not pass the

X1
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test of current usage, because they elucidate important aspects of

programming language design, and they allow students to evaluate
novel concepts.

Certain themes flow through the entire book. One is the interplay
between what can be done at compile time and what must be deferred to
runtime. Actions performed at compile time make for more efficient and
less error-prone execution. Decisions deferred until runtime lead to
oreater flexibility. Another theme is how patterns and pattern matching
play a large role in many ways in programming languages. Pattern
matching is immediately important for string manipulation, but it 1s
also critical in steering logic programming, helpful for extracting data
from structures in ML, and for associating caller and callee in CSP. A
third theme is the quest for uniformity. It is very much like the mathe-
matical urge to generalize. It can be seen in polymorphism, which gen-
eralizes the concept of type, and in overloading, which begins by
unifying operators and functions and then unifies disparate functions
under one roof. It can be seen in the homoiconic forms of LISP, in which
program and data are both presented in the same unitorm way.

Two organizing principles suggest themselves for a book on program-
ming languages. The first is to deal separately with such issues as syn-
tax, types, encapsulation, parallelism, object-oriented programming,
pattern matching, dataflow, and so forth. Each section would introduce
examples from all relevant languages. The other potential organizing
principle is to present individual languages, more or less in full, and
then to derive principles from them.

This book steers a middle course. I have divided it into chapters,
each of which deals primarily with one of the subjects mentioned above.
Most chapters include an extended example from a particular language
to set the stage. This section may introduce language-specific features
not directly relevant to the subject of the chapter. The chapter then in-
troduces related features from other languages.

Because this book covers both central and unusual topics, the in-
structor of a course using the book should pick and choose whatever top-
ics are of personal interest. In general, the latter parts of chapters delve
into stranger and more novel variants of material presented earlier. The
book is intended for a one-semester course, but it is about 30 percent too
long to cover fully in one semester. It is not necessary to cover every
chapter, nor to cover every section of a chapter. Only Chapter 1 and the
first seven sections of Chapter 3 are critical for understanding the other
chapters. Some instructors will want to cover Chapter 4 before the dis-
cussion of ML in Chapter 3. Many instructors will decide to omit
dataflow (Chapter 6). Others will wish to omit denotational semantics
(in Chapter 10).



PREFACE

411

I have not described complete languages, and I may have failed to
mention your favorite language. I have selected representative
programming languages that display particular programming
paradigms or language features clearly. These languages are not all
generally available or even widely known. The appendix lists all the
languages I have mentioned and gives you some pointers to the litera-
ture and to implementations and documentation available on the Inter-
net through anonymous ftp (file-transfer protocol).

The exercises at the end of each chapter serve two purposes. First,
they allow students to test their understanding of the subjects presented
in the text by working exercises directly related to the maternal. More
importantly, they push students beyond the confines of the material pre-
sented to consider new situations and to evaluate new proposals. Sub-
jects that are only hinted at in the text are developed more thoroughly
in this latter type of exercise.

In order to create an appearance of uniformity, I have chosen to mod-
ify the syntax of presented languages (in cases where the syntax 1s not
the crucial issue), so that language-specific syntax does not obscure the
other points that I am trying to make. For examples that do not depend
on any particular language, I have invented what I hope will be clear no-
tation. It is derived largely from Ada and some of its predecessors. This
notation allows me to standardize the syntactic form of language, so that
the syntax does not obscure the subject at hand. It is largely irrelevant
whether a particular language uses beginand endor { and } . On the
other hand, in those cases where I delve deeply into a language in cur-
rent use (like ML, LISP, Prolog, Smalltalk, and C++), I have preserved
the actual language. Where reserved words appear, I have placed them
in bold monospace. Other program excerpts are in monospace font. I
have also numbered examples so that instructors can refer to parts of
them by line number. Each technical term that is introduced 1n the text
is printed in boldface the first time it appears. All boldface entries are
collected and defined in the glossary. I have tried to use a consistent
nomenclature throughout the book.

In order to relieve the formality common in textbooks, I have chosen
to write this book as a conversation between me, in the first singular
person, and you, in the second person. When I say we, I mean you and
me together. 1 hope you don’t mind.

Several supplemental items are available to assist the instructor in
using this text. Answers to the exercises are available from the pub-
lisher (ISBN: 0-201-49835-9) in a disk-based format. The figures from
the text (in Adobe Acrobat format), an Adobe Acrobat reader, and the en-
tire text of this book are available from the following site:
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ftp://aw.com/cseng/authors/finkel

Please check the readme file for updates and changes. The complete text
of this book is intended for on-screen viewing free of charge; use of this
material in any other format is subject to a fee.

There are other good books on programming language design. I can
particularly recommend the text by Pratt [Pratt 96} for elementary ma-
terial and the text by Louden [Louden 93] for advanced material. Other
good books include those by Sebesta [Sebesta 93] and Sethi [Seth1 89].

I owe a debt of gratitude to the many people who helped me write
this book. Much of the underlying text is modified from course notes
written by Charles N. Fischer of the University of Wisconsin—Madison.
Students in my classes have submitted papers which I have used 1in
preparing examples and text; these include the following:

Subject Student Year
Cas Feng Luo 1992
Mike Rogers 1992

Dataflow Chinya Ravishankar 1981
Godel James Gary 1992
Lynx Michael Scott 1985
Mathematics languages  Mary Sue Powers 1994
Miranda Manish Gupta 1992
Post Chinya Ravishankar 1981
05 Rao Surapaneni 1992
CLP William Ralenkotter 1994
Rick Simkin 1981

Russell K. Lakshman 1992
Manish Gupta 1992

1992

Smalltalk/C++ Jonathan Edwards

Jonathan Edwards read an early draft of the text carefully and made
many helpful suggestions. Michael Scott assisted me in improving
Chapter 7 on concurrency. Arcot Rajasekar provided important feed-
back on Chapter 8 on logic programming. My editor, J. Carter Shanklin,
and the reviewers he selected, made a world of difference iIn the
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presentation and coverage of the book. These reviewers were David
Stotts (University of North Carolina at Chapel Hill), Spiro Michaylov
(Ohio State University), Michael G. Murphy (Southern College of Tech-
nology), Barbara Ann Greim (University of North Carolina at Wilming-
ton), Charles Elkan (University of California, San Diego), Henry Ruston
(Polytechnic University), and L. David Umbaugh (University of Texas at
Arlington). The University of Kentucky provided sabbatical funding to
allow me to pursue this project, and Metropolitan College in Kuala
Lumpur, Malaysia, provided computer facilities that allowed me to work
on it. This book was prepared on the Linux version of the Unix operat-
ing system. Linux is the result of work by Linus Torvalds and countless
others, primarily at the Free Software Foundation, who have provided
an immense suite of programs I have used, including text editors, docu-
ment formatters and previewers, spelling checkers, and revision control
packages. I would have been lost without them. Finally, I would like to
thank my wife, Beth L. Goldstein, for her support and patience, and my
daughter, Penina, and son, Asher, for being wonderful.

Raphael A. Finkel
University of Kentucky
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Chapter T

Introduction

The purpose of this book is to study the principles and innovations found
in modern programming languages. We will consider a wide variety of
languages. The goal 1s not to become proficient in any of these lan-
guages, but to learn what contributions each has made to the “state of
the art” in language design.

I will discuss various programming paradigms in this book. Some
languages (such as Ada, Pascal, Modula-2) are imperative; they use
variables, assignments, and iteration. For imperative languages, I will
dwell on such issues as flow of control (Chapter 2) and data types (Chap-
ter 3). Other languages (for example, LISP and FP) are functional;
they have no variables, assignments, or iteration, but model program ex-
ecution as expression evaluation. [ discuss functional languages in
Chapter 4. Other languages (for example, Smalltalk and C++), repre-
sent the object-oriented paradigm, in which data types are general-
ized to collections of data and associated routines (Chapter 5).
Dataflow languages (Val, Sisal, and Post, Chapter 6) attempt to gain
speed by simultaneous execution of independent computations; they re-
quire special computer architectures. A more common way to gain
speed is by concurrent programming (typified by languages such as SR
and Lynx, discussed in Chapter 7). Another major paradigm constitutes
the declarative languages such as Prolog and Gédel (Chapter 8); they
view programming as stating what is wanted and not necessarily how to
compute it. Aggregate languages (Chapter 9) form a a final loosely
knit paradigm that includes languages with special-purpose data for-
mats, such as strings (SNOBOL and Icon), arrays (APL), databases
(dBASE and SQL), and mathematical formulas (Mathematica and
Maple).

In addition to studying actual programming language constructs, 1
will present formal semantic models in Chapter 10. These models allow
a precise specification of what a program means, and provide the basis
for reasoning about the correctness of a program.



2 CHAPTER T INTRODUCTION

1 + PROGRAMMING LANGUAGES AS
SOFTWARE TOOLS

Programming languages fit into a larger subject that might be termed
software tools. This subject includes such fields as interactive editors
(text, picture, spreadsheet, bitmap, and so forth), data transformers
(compilers, assemblers, stream editors, macro processors, text format-
ters), operating systems, database management systems, and tools for
program creation, testing, and maintenance (script files, source-code
management tools, debuggers).

In general, software tools can be studied as interfaces between
clhients, which are usually humans or their programs, and lower-level fa-
cilities, such as files or operating systems.

Figure 1.1 Software
tools

Interface

Implementation

Three questions arising from Figure 1.1 are worth discussing for any
software tool:
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1. What is the nature of the interface?

2. How can the interface be implemented by using the lower-level fa-
cilities?

3. How useful is the interface for humans or their agents?

When we deal with programming languages as software tools, these
questions are transformed:

1. What is the structure (syntax) and meaning (semantics) of the pro-
gramming language constructs? Usually, I will use informal meth-
ods to show what the constructs are and what they do. However,
Chapter 10 presents formal methods for describing the semantics
of programming languages.

2.  How does the compiler writer deal with these constructs in order to
translate them into assembler or machine language? The subject
of compiler construction is large and fascinating, but is beyond the
scope of this book. I will occasionally touch on this topic to assure
you that the constructs can, in fact, be translated.

3. Is the programming language good for the programmer? More
specifically, is it easy to use, expressive, readable? Does 1t protect
the programmer from programming errors? Is it elegant? 1 spend
a significant amount of effort trying to evaluate programming lan-
guages and their constructs in this way. This subject 1s both fasci-
nating and difficult to be objective about. Many languages have
their own fan clubs, and discussions often revolve about an 1ll-
defined sense of elegance.

Programming languages have a profound effect on the ways program-
mers formulate solutions to problems. You will see that different
paradigms impose very different programming styles, but even more 1m-
portant, they change the way the programmer looks at algorithms. I
hope that this book will expand your horizons in much the same way
that your first exposure to recursion opened up a new way of thinking.
People have invented an amazing collection of elegant and expressive
programming structures.

2 +« EVALUATING PROGRAMMING
LANGUAGES

This book introduces you to some unusual languages and some unusual
language features. As you read about them, you might wonder how to
evaluate the quality of a feature or an entire language. Reasonable peo-
ple disagree on what makes for a great language, which is why so many
novel ideas abound in the arena of programming language design. At
the risk of oversimplification, I would like to present a short list of



