H

S3HN.LOM

NDIAVdVYd

"'u""' it “' = 1_||"ﬁi'

||| o '."
|||ﬂ i "
b Y - iH o '_ -'."\—-tlI
Bl K 1' -

‘!‘. —‘I. J_

S i

'y
-

==L

Rl et
""lﬁ"':[ﬁé.. o 1 —
= =

|| L= g 2 i
i - | || u 1|

a3onvA0Y - DESIGN

==

1=

SADVIMONYT

RAPHAEL A. FINKEL

%

A

(

=
b
—

.~ i
\

A
!

SEMA

]|
.II 31 %*—{{ I‘F'r ey i
E.‘}—ﬁll._u[m A o
II“—_'»I. q]

: '[

LLEL

ADVANCED PROGRAMMING
LANGUAGE DESIGN

Raphael A. Finkel

UNIVERSITY OF KENTUCKY

A
A\ A4

Addison-Wesley Publishing Company

Menlo Park, California ¢ Reading, Massachusetts
New York ® Don Mills, Ontario ¢ Harlow, U.K. ® Amsterdam
Bonn e Paris ® Milan e Madrid ® Sydney e Singapore e Tokyo
Seoul ® Taipei ® Mexico City ® San Juan, Puerto Rico

Acquisitions Editor: J. Carter Shanklin Proofreader: Holly McLean-Aldis

Editorial Assistant: Christine Kulke Text Designer: Peter Vacek, Eigentype
Senior Production Editor: Teri Holden Film Preparation: Lazer Touch, Inc.
Copy Editor: Nick Murray Cover Designer: Yvo Riezebos

Manufacturing Coordinator: Janet Weaver
Printer: The Maple-Vail Book Manufacturing Group
Composition and Film Coordinator: Vivian McDougal

Copyright © 1996 by Addison-Wesley Publishing Company

All rights reserved. No part of this publication may be reproduced, stored in a retrieval sys-
tem, or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, or any other media embodiments now known, or hereafter to become known, with-
out the prior written permission of the publisher. Manufactured in the United States of
America. Published simultaneously in Canada.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where these designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed in initial caps or all caps.

The programs and the applications presented in this book have been included for their
instructional value. They have been tested with care but are not guaranteed for any particu-
lar purpose. The publisher does not offer any warranties or representations, nor does it
accept any liabilities with respect to the programs or applications.

Library of Congress Cataloging-in-Publication Data

Finkel, Raphael A.

Advanced programming languages / Raphael A. Finkel.

p. cm.

Includes 1ndex.

ISBN 0-8053-1191-2

1. Programming languages (Electronic computers) I. Title.
QA76.7.F56 1995 95-36693
005.13--dc20 CIP

12345678 9—MA-—99 98 97 96 95

A Addison-Wesley Publishing Company
V'V 2725 Sand Hill Road
Menlo Park, CA 94025

Preface

This book stems in part from courses taught at the University of Ken-
tucky and at the University of Wisconsin—Madison on programming lan-
guage design. There are many good books that deal with the subject at
an undergraduate level, but there are few that are suitable for a one-
semester graduate-level course. This book is my attempt to fill that gap.

The goal of this course, and hence of this book, 1s to expose first-year
graduate students to a wide range of programming language paradigms
and issues, so that they can understand the literature on programming
languages and even conduct research in this field. It should improve the
students’ appreciation of the art of designing programming languages
and, to a limited degree, their skill in programming.

This book does not focus on any one language, or even on a few lan-
cguages; it mentions, at least in passing, over seventy languages, includ-
ing well-known ones (Algol, Pascal, C, C++, LISP, Ada, FORTRAN),
important but less known ones (ML, SR, Modula-3, SNOBOL), signifi-
cant research languages (CLU, Alphard, Linda), and little-known lan-
guages with important concepts (Io, Godel). Several languages are
discussed in some depth, primarily to reinforce particular programming
paradigms. ML and LISP demonstrate functional programming,
Smalltalk and C++ demonstrate object-oriented programming, and Pro-
log demonstrates logic programming.

Students are expected to have taken an undergraduate course in pro-
gramming languages before using this book. The first chapter includes
a review of much of the material on imperative programming languages
that would be covered in such a course. This review makes the book
self-contained, and also makes it accessible to advanced undergraduate
students.

Most textbooks on programming languages cover the well-trodden ar-
eas of the field. In contrast, this book tries to go beyond the standard
territory, making brief forays into regions that are under current re-
search or that have been proposed and even rejected in the past. There
are many fascinating constructs that appear in very few, if any, produc-
tion programming languages. Some (like power loops) should most
likely not be included in a programming language. Others (like Io con-
tinuations) are so strange that it is not clear how to program with them.
Some (APL arrays) show alternative ways to structure languages.
These unusual ideas are important even though they do not pass the

X1

Xii

PREFACE

test of current usage, because they elucidate important aspects of

programming language design, and they allow students to evaluate
novel concepts.

Certain themes flow through the entire book. One is the interplay
between what can be done at compile time and what must be deferred to
runtime. Actions performed at compile time make for more efficient and
less error-prone execution. Decisions deferred until runtime lead to
oreater flexibility. Another theme is how patterns and pattern matching
play a large role in many ways in programming languages. Pattern
matching is immediately important for string manipulation, but it 1s
also critical in steering logic programming, helpful for extracting data
from structures in ML, and for associating caller and callee in CSP. A
third theme is the quest for uniformity. It is very much like the mathe-
matical urge to generalize. It can be seen in polymorphism, which gen-
eralizes the concept of type, and in overloading, which begins by
unifying operators and functions and then unifies disparate functions
under one roof. It can be seen in the homoiconic forms of LISP, in which
program and data are both presented in the same unitorm way.

Two organizing principles suggest themselves for a book on program-
ming languages. The first is to deal separately with such issues as syn-
tax, types, encapsulation, parallelism, object-oriented programming,
pattern matching, dataflow, and so forth. Each section would introduce
examples from all relevant languages. The other potential organizing
principle is to present individual languages, more or less in full, and
then to derive principles from them.

This book steers a middle course. I have divided it into chapters,
each of which deals primarily with one of the subjects mentioned above.
Most chapters include an extended example from a particular language
to set the stage. This section may introduce language-specific features
not directly relevant to the subject of the chapter. The chapter then in-
troduces related features from other languages.

Because this book covers both central and unusual topics, the in-
structor of a course using the book should pick and choose whatever top-
ics are of personal interest. In general, the latter parts of chapters delve
into stranger and more novel variants of material presented earlier. The
book is intended for a one-semester course, but it is about 30 percent too
long to cover fully in one semester. It is not necessary to cover every
chapter, nor to cover every section of a chapter. Only Chapter 1 and the
first seven sections of Chapter 3 are critical for understanding the other
chapters. Some instructors will want to cover Chapter 4 before the dis-
cussion of ML in Chapter 3. Many instructors will decide to omit
dataflow (Chapter 6). Others will wish to omit denotational semantics
(in Chapter 10).

PREFACE

411

I have not described complete languages, and I may have failed to
mention your favorite language. I have selected representative
programming languages that display particular programming
paradigms or language features clearly. These languages are not all
generally available or even widely known. The appendix lists all the
languages I have mentioned and gives you some pointers to the litera-
ture and to implementations and documentation available on the Inter-
net through anonymous ftp (file-transfer protocol).

The exercises at the end of each chapter serve two purposes. First,
they allow students to test their understanding of the subjects presented
in the text by working exercises directly related to the maternal. More
importantly, they push students beyond the confines of the material pre-
sented to consider new situations and to evaluate new proposals. Sub-
jects that are only hinted at in the text are developed more thoroughly
in this latter type of exercise.

In order to create an appearance of uniformity, I have chosen to mod-
ify the syntax of presented languages (in cases where the syntax 1s not
the crucial issue), so that language-specific syntax does not obscure the
other points that I am trying to make. For examples that do not depend
on any particular language, I have invented what I hope will be clear no-
tation. It is derived largely from Ada and some of its predecessors. This
notation allows me to standardize the syntactic form of language, so that
the syntax does not obscure the subject at hand. It is largely irrelevant
whether a particular language uses beginand endor { and } . On the
other hand, in those cases where I delve deeply into a language in cur-
rent use (like ML, LISP, Prolog, Smalltalk, and C++), I have preserved
the actual language. Where reserved words appear, I have placed them
in bold monospace. Other program excerpts are in monospace font. I
have also numbered examples so that instructors can refer to parts of
them by line number. Each technical term that is introduced 1n the text
is printed in boldface the first time it appears. All boldface entries are
collected and defined in the glossary. I have tried to use a consistent
nomenclature throughout the book.

In order to relieve the formality common in textbooks, I have chosen
to write this book as a conversation between me, in the first singular
person, and you, in the second person. When I say we, I mean you and
me together. 1 hope you don’t mind.

Several supplemental items are available to assist the instructor in
using this text. Answers to the exercises are available from the pub-
lisher (ISBN: 0-201-49835-9) in a disk-based format. The figures from
the text (in Adobe Acrobat format), an Adobe Acrobat reader, and the en-
tire text of this book are available from the following site:

X1V

PREFACE

ftp://aw.com/cseng/authors/finkel

Please check the readme file for updates and changes. The complete text
of this book is intended for on-screen viewing free of charge; use of this
material in any other format is subject to a fee.

There are other good books on programming language design. I can
particularly recommend the text by Pratt [Pratt 96} for elementary ma-
terial and the text by Louden [Louden 93] for advanced material. Other
good books include those by Sebesta [Sebesta 93] and Sethi [Seth1 89].

I owe a debt of gratitude to the many people who helped me write
this book. Much of the underlying text is modified from course notes
written by Charles N. Fischer of the University of Wisconsin—Madison.
Students in my classes have submitted papers which I have used 1in
preparing examples and text; these include the following:

Subject Student Year
Cas Feng Luo 1992
Mike Rogers 1992

Dataflow Chinya Ravishankar 1981
Godel James Gary 1992
Lynx Michael Scott 1985
Mathematics languages Mary Sue Powers 1994
Miranda Manish Gupta 1992
Post Chinya Ravishankar 1981
05 Rao Surapaneni 1992
CLP William Ralenkotter 1994
Rick Simkin 1981

Russell K. Lakshman 1992
Manish Gupta 1992

1992

Smalltalk/C++ Jonathan Edwards

Jonathan Edwards read an early draft of the text carefully and made
many helpful suggestions. Michael Scott assisted me in improving
Chapter 7 on concurrency. Arcot Rajasekar provided important feed-
back on Chapter 8 on logic programming. My editor, J. Carter Shanklin,
and the reviewers he selected, made a world of difference iIn the

PREFACE

XV

presentation and coverage of the book. These reviewers were David
Stotts (University of North Carolina at Chapel Hill), Spiro Michaylov
(Ohio State University), Michael G. Murphy (Southern College of Tech-
nology), Barbara Ann Greim (University of North Carolina at Wilming-
ton), Charles Elkan (University of California, San Diego), Henry Ruston
(Polytechnic University), and L. David Umbaugh (University of Texas at
Arlington). The University of Kentucky provided sabbatical funding to
allow me to pursue this project, and Metropolitan College in Kuala
Lumpur, Malaysia, provided computer facilities that allowed me to work
on it. This book was prepared on the Linux version of the Unix operat-
ing system. Linux is the result of work by Linus Torvalds and countless
others, primarily at the Free Software Foundation, who have provided
an immense suite of programs I have used, including text editors, docu-
ment formatters and previewers, spelling checkers, and revision control
packages. I would have been lost without them. Finally, I would like to
thank my wife, Beth L. Goldstein, for her support and patience, and my
daughter, Penina, and son, Asher, for being wonderful.

Raphael A. Finkel
University of Kentucky

Contents

PREFACE xi

Chapter 1 INTRODUCTION 1

1 Programming Languages as Software Tools 2
2 Evaluating Programming Languages 3

3 Background Material on Programming Languages 5
1 Variables, Data Types, Literals, and Expressions
2 Control Constructs 11
3 Procedures and Parameter Passing 14
4 Block Structure 20
5 Runtime Store Organization 26

4 Final Comments 28

EXERCISES 29

Chapter 2 CONTROL STRUCTURES 31
1 Exception Handling 31

2 Coroutines 36
1 Coroutines in Simula 36
2 Coroutines in CLU 39
3 Embedding CLU lterators in C 43
4 Coroutines inlcon 50

3 Continuations: lo 50
4 Powerloops 57
5 Final Comments 59

EXERCISES 60

Chapter 3 TYPES 63
1 Dynamic-Typed Languages 64

Strong Typing 64
Type Equivalence 65
Dimensions 70
Abstract Data Types 71

U1 & W N

vi

CONTENTS

6 Labels, Procedures, and Types as First-Class Values 75

7 ML 79
Expressions 81
Global Declarations 82

1
2
3 Local Declarations 85

4 Lists 86

5 Functions and Patterns 88
6

/

8

Polymorphic Types 91
Type Inference 92
Higher-Order Functions 96

9 ML Types 98

10 Constructed Types 99

8 Miranda 103

9 Russell 108
10 Dynamic Typing in Statically Typed Languages 112
11 Final Comments 114

EXERCISES 116

Chapter 4 FUNCTIONAL PROGRAMMING 119

1 LISP 120

Function Syntax 123

Forms 123

Programmer-Defined Functions 124
Scope Rules 125

Programming 127

Closures and Deep Binding 131
Identifier Lookup 133

The Kernel of a LISP Interpreter 134
Run-time List Evaluation 138

Lazy Evaluation 139

Speculative Evaluation 144
Strengths and Weaknesses of LISP 144

2 FP 146
1 Definition of an FP Environment 146
2 Reduction Semantics 14/

3 Persistence in Functional Languages 148
4 Limitations of Functional Languages 149
5 Lambda Calculus 152

EXERCISES 159

N = QO Woo NSy b W —

CONTENTS vis

Chapter 5 OBJECT-ORIENTED PROGRAMMING 163
1 Definitions 163
2 A Short Example 165
3 Simula 167
4

Smalltalk 169

Assignment and Messages 170
Blocks 171

Classes and Methods 173
Superclasses and Subclasses 176
Implementation of Smalltalk 179
Subtle Features 182

5 C++ 184
1 The Consequences of Static Binding 134
2 Sample Classes 186

6 Final Comments 192
EXERCISES 194

N0 bWk =

Chapter 6 DATAFLOW 197
1 Dataflow Computers 200
2 Val 202

3 Sisal 206

4

Post 207

Data Types 207

Programs 208

Synchrony Control 209
Guardians 210

Speculative Computation 211

5 Fmal Comments 212
EXERCISES 214

U1 BN =

Chapter 7 CONCURRENT PROGRAMMING 217
1 Starting Multiple Threads 218

2 Cooperation by Means of Shared Variables 219
1 Join 220

Semaphores 220

Mutexes 221

Conditional Critical Regions 222

Monitors 223

Crowd Monitors 231

Sy bW N

vill CONTENTS

/

Event Counts and Sequencers 232

8 Barriers 235
9 Performance lssues 236

3 Transactions: Argus 238
4 Cooperation by Procedure Call 241

|
2
3

Rendezvous 241
Remote Procedure Call (RPC) 245
Remote Evaluation (REV) 247

5 Cooperation by Messages 249

1

Sy U b W N

CSP 250

Lynx 253

Linda 256

SR 257

Object-Oriented Programming 258
Data-Parallel Programming 261

6 Final Comments 264
EXERCISES 264

Chapter 8 LOGIC PROGRAMMING 267
1 Prolog 267

2 God

GV h who — 00 Wik —

O OO NOU A WWho —

Terms, Predicates, and Queries 268
Separating Logic and Control 276
Axiomatic Data Types 276

List Processing 279

Difference Lists 282

Arithmetic 283

Termination Issues 284

Resolution Proof Techniques 285

Control Aspects 286

An Example of Control Programming 289
Negatton 290

Other Evaluation Orders 292
Constraint-Logic Programming (CLP) 294
Metaprogramming 296

299
Program Structure 300
Types 300

Logic Programming 302
Conditionals 303
Control 304

3 Final Comments 308
EXERCISES 309

CONTENTS

Chapter 9 AGGREGATES 311

1 Strings 311
1 Literals and Simple Operations 311
Representation 314
Pattern Matching 315
Associative Arrays 316

Substrings as First-Class Values 317
SNOBOL 319

lcon 322
Homoiconic Use of Strings: Tcl 328

2 Arrays: APL 329

1 Operators and Meta-operators 330
2 An APL Evaluator 334

3 Incremental Evaluation 336

3 Database Languages 337
1 Data Types 337
2 Control Structures 340
3 Modifying Data 343
4 SQL 344

4 Symbolic Mathematics 347
5 Final Comments 350

EXERCISES 353

QO N U AW

Chapter 10 FORMAL SYNTAX AND SEMANTICS 357
1 Syntax 357

2 Axiomatic Semantics 359
1 Axioms 361
2 A Simple Proof 363
3 Weakest Preconditions 366

3 Denotational Semantics 369
Domain Definitions 371
Product Domains 372
Disjoint-Union Domains 372
Function Domains 373
Domain Equations 374
Nonrecursive Definitions 375
Recursive Definitions 376
Expressions 378

|dentifiers 383
Environments 384
Variables 386

— OO NV R W

AA

CONTENTS

12 Conditional and Iterative Statements 390

13 Procedures 392

14 Functions 394

15 Recursive Routines 397

16 Modeling Memory and Files 398

17 Blocks and Scoping 402

18 Parameters 405

19 Continuations 408

20 Statement Continuations 412

21 Declaration Continuations 413

22 Procedures, Functions, and Parameters 414

23 Flow of Control 417

24 Summary of Syntactic and Semantic Domains and Semantic
Functions 418

4 Final Comments 419
EXERCISES 421

APPENDIX: LANGUAGES MENTIONED 423

GLOSSARY 431

REFERENCES 453

INDEX 463

Chapter T

Introduction

The purpose of this book is to study the principles and innovations found
in modern programming languages. We will consider a wide variety of
languages. The goal 1s not to become proficient in any of these lan-
guages, but to learn what contributions each has made to the “state of
the art” in language design.

I will discuss various programming paradigms in this book. Some
languages (such as Ada, Pascal, Modula-2) are imperative; they use
variables, assignments, and iteration. For imperative languages, I will
dwell on such issues as flow of control (Chapter 2) and data types (Chap-
ter 3). Other languages (for example, LISP and FP) are functional;
they have no variables, assignments, or iteration, but model program ex-
ecution as expression evaluation. [discuss functional languages in
Chapter 4. Other languages (for example, Smalltalk and C++), repre-
sent the object-oriented paradigm, in which data types are general-
ized to collections of data and associated routines (Chapter 5).
Dataflow languages (Val, Sisal, and Post, Chapter 6) attempt to gain
speed by simultaneous execution of independent computations; they re-
quire special computer architectures. A more common way to gain
speed is by concurrent programming (typified by languages such as SR
and Lynx, discussed in Chapter 7). Another major paradigm constitutes
the declarative languages such as Prolog and Gédel (Chapter 8); they
view programming as stating what is wanted and not necessarily how to
compute it. Aggregate languages (Chapter 9) form a a final loosely
knit paradigm that includes languages with special-purpose data for-
mats, such as strings (SNOBOL and Icon), arrays (APL), databases
(dBASE and SQL), and mathematical formulas (Mathematica and
Maple).

In addition to studying actual programming language constructs, 1
will present formal semantic models in Chapter 10. These models allow
a precise specification of what a program means, and provide the basis
for reasoning about the correctness of a program.

2 CHAPTER T INTRODUCTION

1 + PROGRAMMING LANGUAGES AS
SOFTWARE TOOLS

Programming languages fit into a larger subject that might be termed
software tools. This subject includes such fields as interactive editors
(text, picture, spreadsheet, bitmap, and so forth), data transformers
(compilers, assemblers, stream editors, macro processors, text format-
ters), operating systems, database management systems, and tools for
program creation, testing, and maintenance (script files, source-code
management tools, debuggers).

In general, software tools can be studied as interfaces between
clhients, which are usually humans or their programs, and lower-level fa-
cilities, such as files or operating systems.

Figure 1.1 Software
tools

Interface

Implementation

Three questions arising from Figure 1.1 are worth discussing for any
software tool:

2 EVALUATING PROGRAMMING LANGUAGES 3

1. What is the nature of the interface?

2. How can the interface be implemented by using the lower-level fa-
cilities?

3. How useful is the interface for humans or their agents?

When we deal with programming languages as software tools, these
questions are transformed:

1. What is the structure (syntax) and meaning (semantics) of the pro-
gramming language constructs? Usually, I will use informal meth-
ods to show what the constructs are and what they do. However,
Chapter 10 presents formal methods for describing the semantics
of programming languages.

2. How does the compiler writer deal with these constructs in order to
translate them into assembler or machine language? The subject
of compiler construction is large and fascinating, but is beyond the
scope of this book. I will occasionally touch on this topic to assure
you that the constructs can, in fact, be translated.

3. Is the programming language good for the programmer? More
specifically, is it easy to use, expressive, readable? Does 1t protect
the programmer from programming errors? Is it elegant? 1 spend
a significant amount of effort trying to evaluate programming lan-
guages and their constructs in this way. This subject 1s both fasci-
nating and difficult to be objective about. Many languages have
their own fan clubs, and discussions often revolve about an 1ll-
defined sense of elegance.

Programming languages have a profound effect on the ways program-
mers formulate solutions to problems. You will see that different
paradigms impose very different programming styles, but even more 1m-
portant, they change the way the programmer looks at algorithms. I
hope that this book will expand your horizons in much the same way
that your first exposure to recursion opened up a new way of thinking.
People have invented an amazing collection of elegant and expressive
programming structures.

2 +« EVALUATING PROGRAMMING
LANGUAGES

This book introduces you to some unusual languages and some unusual
language features. As you read about them, you might wonder how to
evaluate the quality of a feature or an entire language. Reasonable peo-
ple disagree on what makes for a great language, which is why so many
novel ideas abound in the arena of programming language design. At
the risk of oversimplification, I would like to present a short list of

