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Preface

This book is an introduction to the fascinating and important interplay between
non-linear dynamics and statistical theories for geophysical flows. The book is
designed for a multi-disciplinary audience ranging from beginning graduate stu-
dents to senior researchers in applied mathematics as well as theoretically inclined
graduate students and researchers in atmosphere/ocean science. The approach in
this book emphasizes the serendipity between physical phenomena and modern
applied mathematics, including rigorous mathematical analysis, qualitative mod-
els, and numerical simulations. The book includes more conventional topics for
non-linear dynamics applied to geophysical flows, such as long time selective
decay, the effect of large-scale forcing, non-linear stability and fluid flow on the
sphere, as well as emerging contemporary research topics involving applications
of chaotic dynamics, equilibrium statistical mechanics, and information theory.
The various competing approaches for equilibrium statistical theories for geo-
physical flows are compared and contrasted systematically from the viewpoint
of modern applied mathematics, including an application for predicting the Great
Red Spot of Jupiter in a fashion consistent with the observational record. Novel
applications of information theory are utilized to simplify, unify, and compare
the equilibrium statistical theories and also to quantify aspects of predictability
in non-linear dynamical systems with many degrees of treedom. No previous
background in geophysical flows, probability theory, information theory, or equi-
librium statistical mechanics is needed to read the text. These topics and related
background concepts are all introduced and developed through elementary exam-
ples and discussion throughout the text as they arise. The book is also of wider
interest to applied mathematicians and other scientists to illustrate how ideas from
statistical physics can be applied in novel ways to inhomogeneous large-scale
complex non-linear systems.

The material in the book is based on lectures of the first author given at the
Courant Institute in 1995, 1997, 2001, and 2004. The first author thanks Professor
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xii Preface

Pedro Embid as well as his former Ph.D. students Professor Pete Kramer and
Seuyung Shim for their help with early versions of Chapters 1, 2, 3, 4, and 6 of
the present book. Joint research work with Professors Richard Kleeman and Bruce
Turkington as well as Majdas former Courant post docs, Professors Marcus Grote,
Ilya Timofeyev, Rafail Abramov, and Mark DeBattista have been incorporated
into the book; their explicit and implicit contributions are acknowledged warmly.
The authors acknowledge generous support of the National Science Foundation
and the Office of Naval Research during the development of this book, including
partial salary support for Xiaoming Wangs visit to Courant in the spring semester
of 2001.
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1

Barotropic geophysical flows and two-dimensional
fluid flows: elementary introduction

1.1 Introduction

The atmosphere and the ocean are the two most important fluid systems of our
planet. The bulk of the atmosphere is a thin layer of air 10 km thick that engulfs
the earth, and the oceans cover about 70% of the surface of our planet. Both
the atmosphere and the ocean are in states of constant motion where the main
source of energy is supplied by the radiation of the sun. The large-scale motions
of the atmosphere and the ocean constitute geophysical flows and the science
that studies them is geophysical fluid dynamics. The motions of the atmosphere
and the ocean become powerful mechanisms for the transport and redistribution
of energy and matter. For example, the motion of cold and warm atmospheric
fronts determine the local weather conditions; the warm waters of the Gulf Stream
are responsible for the temperate climate in northern Europe; the winds and the
currents transport the pollutants produced by industries. It is clear that the motions
of the atmosphere and the ocean play a fundamental role in the dynamics of our
planet and greatly affect the activities of mankind.

It is apparent that the dynamical processes involved in the description of
geophysical flows in the atmosphere and the ocean are extremely complex. This
is due to the large number of physical variables needed to describe the state of the
system and the wide range of space and time scales involved in these processes.
The physical variables may include the velocity, the pressure, the density, and, in
addition, the humidity in the case of atmospheric motions or the salinity in the
case of oceanic motions. The physical processes that determine the evolution of
the geophysical flows are also numerous. They may include the Coriolis force due
to the earth’s rotation; the sun’s radiation; the presence of topographical barriers,
as represented by mountain ranges in the case of atmospheric flows and the ocean
floor and the continental masses in the case of oceanic flows. There may be also
dissipative energy mechanisms, for example due to eddy diffusivity or Ekman
drag. The ranges of spatial and temporal scales involved in the description of
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2 Barotropic geophysical flows and two-dimensional fluid flows

geophysical flows is also very large. The space scales may vary from a few
hundred meters to thousands of kilometers. Similarly, the time scales maybe as
short as minutes and as long as days, months, or even years.

The above remarks make evident the need for simplifying assumptions regarding
the relevant physical mechanisms involved in a given geophysical flow process, as
well as the relevant range of space and time scales needed to describe the process.
The treatises of Pedlosky (1987) and Gill (1982) are two excellent references to
consult regarding the physical foundations of geophysical flows and different sim-
plifying approximations utilized in the study of the various aspects of geophysical
fluids. Here we concentrate on large-scale flows for the atmosphere or mesoscale
flows in the oceans. The simplest set of equations that meaningfully describes the
motion of geophysical flows under these circumstances is given by the:

Barotropic quasi-geostrophic equations

Dgq "
—L = D@+ F D)
qg=w+By+h(x,y), where w = Ay
W (1.1)
v=Viy= oy ,
ay
ax
where £ stands for the advective (or material) derivative
D d d d
o B =iy e Py

Dt~ ot ax dy
and A denotes the Laplacian operator
2 3
A=divV = 33 + ii
dx dy
In equation (1.1), g is the potential vorticity, v is the horizontal velocity field, w, is
the relative vorticity, and ¢ is the stream function. The horizontal space variables
are given by X = (x, y) and ¢ denotes time. The term By is called the beta-plane
effect from the Coriolis force and its significance will be explained later. The term
h = h(x, y) represents the bottom floor topography. The term D(A)y represents
various possible dissipation mechanisms. Finally, the term F (X, t) accounts for
additional external forcing. The fluid density is set to 1.

Before continuing, we would like to explain briefly, in physical terms and with-
out going into any technical details, the origin of the barotropic quasi-geostrophic
equations. The barotropic rotational equations, also called rotating shallow water
equations (Pedlosky, 1987), admit two different modes of propagation, slow and



