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Preface

Finsler geometry is just the Riemannian geometry without the restriction of quadratic
form, and it was originated in Riemann’s 1854 “habilitation” address: “Uber die Hy-
pothesen, welche der Geometrie zu Grunde liegen” (On the Hypotheses, which lie at
the Foundation of Geometry). In the context of Riemann’s lecture, the restriction
to a quadratic form constitutes only a special case. Riemann saw the difference
between the quadratic case and the general case, and chose the former case as the
representative to understand the structure of manifolds. He saw the great merit
of the former case, and introduced for it the curvature tensor and the notion of
sectional curvature. Such was done through a Taylor expansion of the Riemannian
metric. There was no significant progress in the general case until 1918, when Paul
Finsler studied the variation of general case. For this reason, the general case is
referred to as Finsler metric. Since the end of 20th century, Finsler geometry has
made great progress under the leadership of the late great geometer Shiing Shen
Chern, and it has gotten many applications in various fields such as Control Theory
and Relativity Theory, etc.

In this monograph we focus our interest on comparison theorems and submani-
folds in Finsler geometry, and systematically describe the author’s contributions in
these topics. We express the discussion in the thread of volume form. Volume, as
an important geometric invariant, plays a key role in global differential geometry,
and it is closely related to the curvature and topology of differential manifolds. It
should be pointed out here that volume form is uniquely determined by the given
Riemannian metric, while there are different choices of volume forms for Finsler
metrics. Thus it is important to choose suitable volume forms in the research of
Finsler geometry. The frequently used volume forms in the literature are so-called
Busemann-Hausdorff volume form and Holmes-Thompson volume form. We shall
introduce the extreme volume form, including the maximal and minimal volume
forms, for Finsler metric. By using the extreme volume form, we are able to remove
the addition assumption on S-curvature that is needed in the literatures. This shows
that the extreme volume form is a good choice in comparison technique in Finsler
geometry. As for the theory of Finsler submanifold, Professor Zhongmin Shen first
introduced the notions of the mean curvature and minimal submanifolds for Finsler
submanifolds by using the volume variation with respect to Busemann-Hausdorff
volume form; here we shall generalize this theory to general Finsler volume form.
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The monograph consists of four chapters. In Chapter 1 we give a brief descrip-
tion of basic concepts and fundamental results in Finsler geometry, including the
Minkowski spaces, geodesics, Jacobi fields, conjugate points and the basic index
lemma, which are necessary to study global Finsler geometry. Normally the compu-
tations in Finsler geometry are very complicated; here we discuss without using the
structure equations so that the computations are relatively simple and the reader
can easily understand the arguments. It is also worth pointing out that we provide
a new and simple proof for Deicke’s theorem: The Minkowski space is Euclidean
if and only if its mean Cartan tensor vanishes. Then in Chapter 2 we focus on
comparison theorems in Finsler geometry. Firstly, we derive the basic comparison
theorem—the Rauch’s comparison theorem. Secondly, we introduce the notions of
general Finsler volume form, S-curvature, Hessian and Laplacian of smooth func-
tions, and then establish the Hessian comparison theorems, Laplacian comparison
theorems and volume comparison theorems for Finsler manifolds under various cur-
vature conditions. We also establish a toponogov type comparison theorem for
geodesic triangles. It should be noted that the notion of Hessian defined here is
different from that defined by Professor Zhongmin Shen. The advantage of our def-
inition is that the Hessian is a symmetric bilinear form and we can treat it by using
the theory of symmetric matrices. Chapter 3 is comprised of various applications of
comparison theorems, mainly on the curvature and topology of Finsler manifolds.
We first derive a generalized Myers theorem for Finsler manifold, and generalize
Calabi-Yau’s linear volume growth theorem and Mckean type estimations of the first
eigenvalue to Finsler manifolds. Then we discuss the Gromov’s precompactness the-
orem, the first Betti number, and the fundamental group of Finsler manifolds under
suitable curvature assumptions. We also obtain a lower bound for injectivity radius
for compact reversible Finsler manifolds, and discuss a fundamental property of finite
topological type. It should be stressed here that the counting function is a basic no-
tion to describe the growth of fundamental group, and the usual definition of count-
ing function used in the literature demands that the fundamental group be finitely
generated. Here we provide a new definition which removes the above restriction.
As a consequence, many results are new even for Riemannian manifolds. Finally in
Chapter 4 we establish the theory of submanifolds for general volume form and ob-
tain some basic results. This monography may be served as a textbook or a reference
book for postgraduate students and scientists who are interested in global Finsler
geometry.

I would like to take this opportunity to thank my advisors Professor Yi-Bing
Shen and Professor Yuan-Long Xin for their constant supports and encouragements.
I would also like to thank several people in my research experience in Finsler geom-
etry. They are: Professor Zhongmin Shen, Professor Xiaohuan Mo and Professor
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Xinyue Cheng. Finally, I thank my wife Wei-Cheng Yu, for her constant support
and understanding. The project is supported by the Natural Science Foundation of
China (Grant No. 11171139).

Bingye Wu
Jan. 2015
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Chapter 1

Basics on Finsler Geometry

Finsler geometry is just the Riemannian geometry without the quadratic restriction.
Instead of an Euclidean norm on each tangent space, one endows every tangent
space of a differentiable manifold with a Minkowski norm. Since there are many
different Minkowski spaces that are not mutually isomorphic, Finsler manifolds are
more “colorful” than Riemannian manifolds. In this chapter we shall give a brief
description of basic quantities and fundamental properties for Finsler metrics which
are foundations to study global Finsler geometry.

1.1 Minkowski Space
1.1.1 Definition and Examples

Before giving the definition of Minkowski space, let us first discuss a useful property
of positively homogeneous function on n-dimensional space of real number R™. Re-
call that a function f : R® — R is called a positively homogeneous function of degree
s on R™ if f(Ay) = A®f(y) holds for any y € R™ and X\ > 0.

Lemma 1.1(Euler’s Lemma) Let f : R®™ — R be a positively homogeneous
function of degree s on R", then f,:(y)y’ = sf(y), here we have used the the Ein-
stein convention, that is, repeated indices with one upper index and one lower index
denotes summation over their ranges, and f,: denotes the partial derivative of f
with respect to y'.

Proof Taking derivative on two sides of f(Ay) = A°f(y) with respect to A
yields fy: (Ay)y* = sA*~1f(y). Letting A = 1 we get the desired result. O

Now we give the definition of Minkowski space.

Definition 1.1 Let V be an n-dimensional real vector space. A function
F = F(y) on V is called a Minkowski norm if it satisfies the following properties:

(1) F(y) 2 0 for any y € V, and F(y) = 0 if and only if y = 0;

(2) F(A\y) = AF'(y) for any y € V and X > 0;

(3) F is C* on V\{0} such that for any y € V\{0}, the following bilinear
symmetric functional g, on V' is an inner product:
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1 92
gy(u,v) := v [F2(y + su+ tv)]s:t=0 .

The pair (V, F) is called a Minkowski space, and g, the fundamental form with
respect to y . If F(y) = F(—y) holds for any y € V, then (V, F)) is called reversible.
Let (V, F) be a Minkowski space, and

S={yeV|F(y) =1}.

S is a closed hypersurface around the origin, which is diffeomorphic to the standard
sphere S"~! C R". S is called the indicatriz of (V, F). Fix a basis {b;} of V, and
view F(y) = F(y'b;) as a function of (y*) € R™. For y # 0, write

gij(y) = gy(biabj) = % [Fz]yiyj (y) = Fy" (y)ij (y) s F(y)Fy"yj (y) (1'1)

Then
gy(u,v) = g,-j(y)uivj, u = u'b;,v = v'b;. (1.2)

Since the Minkowski norm is a positively homogeneous function of degree one, by

F(y) = \/95)v'y’, y=y'bs

When (V, F) is reversible, it is clear that g;;(y) = gi;(—y), and consequently g, (u, v)
=g—y(v,v).
For any y # 0, one has the following decomposition for V:

Euler’s lemma we get

V=R-yo W,

here W), is the orthogonal complementary of R - y in V with respect to the inner
product g, namely,
Wy ={w e V]gy(y,w) =0} C V.

Let 1
hy(u,v) = gy(u,v) — Wgy(y)u)gy(y!v)'

We call hy the angular form with respect to y, and its components are
i}
hij (y) == hy(bi, b)) = gi; — 759wy 9jay" = FFyiys

It is easy to know that hy(y,u) =0,Yu € V, and for u = w+ Ay € V with w € Wy,
one has
h’y(uv u) - g’y(wv w) 2 Oa
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and the equality holds if and only if v = Ay. Hence, h, is semi-positive definite on
V while it is positive definite on W,. Now we prove two fundamental inequalities
for Minkowski space.
Lemma 1.2 Let (V, F) be a Minkowski space, then
(1) F satisfies
Flu+v)< F(u)+ F(v), wu,veV, (1.3)

and the equality holds if and only if u = 0 or there is A > 0 such that v = Au;
(2) (Cauchy-Schwarz Inequality) Let y # 0, then for any u € V one has

gy(y;u) < F(y)F(u), (1.4)

and the equality holds if and only if there exists A > 0 such that u = \y.

Proof Let us first prove (1.3). Without loss of generality, we can assume
that u,v € V\{0}. If u,v are linearly independent, let y(t) = tu + (1 — t)v, then
y(t) # 0,t € [0,1]. Consider the function ¢(t) = F(y(t)), then

@"(t) = Fyips (y(t)) (u* —v*) (0! —v?) = —FTyl(mhy(t)(u —v,u—v) > 0.

Therefore, ¢ = (t) is a strict convex function, and we see from the property of
convex function that

20 (3) <00+ (1)

namely,
F(u+v) < F(u) + F(v).

When u,v are linearly dependent, then there exists A € R such that v = Mu. If
14+ A>0, then

Flu+v)=F((1+MNu) =1+ N)F(u) < F(u) + F(Au) = F(u) + F(v),
and the equality holds if and only if A > 0. Finally, when 1+ X\ < 0,
Flu+v)=F(—(14+X)(-u)) = -1+ N F(-u) = —=F(—u) + F(Au) < F(u) + F(v),

and thus (1.3) is proved.
Now let us prove (1.4). For w € Wy, let ¢(t) = F?(y + tw), then by (1.1),(1.2)
and Euler’s lemma we have

¢'(0) = % [F2(y + tw)] |i=0 = 2F (y) Fys (y)w'* = 2g, (y, w) = 0,

@"(t) =2 [Fys (y + tw)w']* + 2F(y + tw) Fyigs (y + tw)w'n? > 2y v (w, w) > 0,
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and the equality holds if and only if w = 0. Consequently, ¢(0) < ¢(¢),Vt # 0, and
the equality holds if and only if w = 0. Especially,

Fly) < Fly+w), weW,, (1.5)

with the equality holds if and only if w = 0. Now for any u € V, write u = Ay + w,
here A € R,w € W,,. Then

8y (¥, u) = Agy(¥,y) = AF?(y). (1.6)

If A <0, then it is easy to see from (1.6) that (1.4) holds, with the equality holds if
and only if A =0 and u = 0. On the other hand, if A > 0, it is clear from (1.5) and
(1.6) that

1
B(0:0) = NP < OF (y-+ 30) F) = F)F().
The equality holds if and only if w = 0, namely, u = Ay, A > 0, so the lemma is
proved. O
From (1.3) it is clear that F' is the norm of vector space V in the usual sense
when F is reversible, and it is also easy to verify that (1.4) can be rewritten as

gy (y, u)| < F(y)F(u) (1.4)

when (V, F) is reversible. But (1.4)" does not hold for general Minkowski space (see
Example 1.2).
In the following we give some important examples of Minkowski space.
Example 1.1(Euclidean norm) Let (,) is an inner product on vector n-space
V, and {b;} is a basis of V. Let

a=(y,y) = ayy'y’, y=y'b;
where a;; = (b;, b;). It is obvious that a is a Minkowski norm on V, and g, (u,v) =
(u,v) is independence of y € V. « is called the Euclidean norm, and (V, a) is called
the Euclidean space. Euclidean norm is reversible, and it is well known that all

Euclidean spaces with the same dimension are mutually isomorphic isometrically.
The standard Euclidean norm | - | on R” is

n

=3 () y=(')erm

i=1

Example 1.2(Randers norm) Let o = 1/(y,y) = v/ai;y"y? be an Euclidean
norm on vector space V, and 8 = b;y* € V* a linear functional on V. Let

F(y) = a(y) + By)- (1.7)
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A direct computation shows that

I T2
det(gi;) = ( +) det(as;), (1.9)
where y; = a;y*. Let
18la:= sup 29 = sup gy,

ver\i0) @) agy)=

then it is easy to know from the method of Lagrange multipliers that ||8]o« =
\/a¥ib;b;, here (a¥) = (ai;)~!. By (1.9) we see that the matrix (gi;) is positive
if and only if |8l < 1. Therefore, F' is a Minkowski norm on V if and only if
IBlle < 1. In this situation, we call F' a Randers norm on V. Randers norm is
non-reversible when g3 # 0.

Now we consider the Randers norm on R” given by F(y) = |y| + by',0 < b < 1.
Particularly, choose y = (1,0,---,0) = —u, then F(y) = 1+ b,F(u) = 1 — b, and
from (1.8) one see that gy, (y,u) = —(1 + b)2. Consequently |g,(y,u)| = (1 +b)? >
(14 06)(1 —b) = F(y)F(u), that is to say, (1.4) does not hold.

Example 1.3 Consider the function on the 2-plane R? as following:

Fly) = (")*+3c)? @+ )Y, y= ("% eR%

A direct calculation shows that

e

o= 2 (F) = 2007+ 97 467" +3e(s)°
11— 2 ylyl = 2F6 y
2 _ 1\3(,2\3
912 = % (Fz)y1y2 L 42)1(,}/6) <2 921,
— (F2) .0 = 3c(y")® +6(y")* (¥%)° + 9c(y")*(¥*)* + 2(y*)°
22 = 2 y2y2 26 s
3 (2c(y")* + (4 — 3¢%)(¥")2(¥2)% + 2¢(y?)*)

_ 2 _
det(gi;) = 911922 — (912)° = 5

It is clear that g11 > 0 and go2 > 0 holds if and only if ¢ > 0. Now assume that
¢ > 0, and note that

2¢(y")* + (4= 3¢%)(y")’ (¥*)" + 2c(y?)* = 2¢ ((v")* +26(4")*(¥*)* + (7)) ,

where & := (4 — 3c?)/(4c). Thus det(g;;) is positive for any y # 0 if and only if
6 > —1,and § > —1 is equivalent to ¢ < 2. In summary, F is a Minkowski norm on
R? if and only if 0 < ¢ < 2, and clearly it is reversible.
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1.1.2 Legendre Transformation

Let (V,F) be a Minkowski space, and by,---,b, a basis of V. Let V* be the
dual vector space of V with the dual basis #!,--- ,0". The Legendre transformation
1:V —=V*fromV to V*is

= { g,(y,-) €V, VyeV\{0},
0, y=0.
It is easy to see from the definition that the expression of Legendre transformation
is given by
1(y) = 9i5()y’0", y=y'b; € V\{0}. (1.10)
For any £ € V*, define

*(E) e ) _
F*(&) = y;}l\}io} F) iggé(y), (1.11)

then it is obvious that
F*(\6) = AF*(§), F*(E+n) < F*E)+F'(n), &EneVi,A>0.

We call F* the dual norm of F. We have following lemmas for Legendre transfor-
mation.

Lemma 1.3  The Legendre transformation | : V\{0} — V*\{0} is a smooth
diffeomorphism from V\{0} to V*\{0}, and for any y € V\{0}, the covector £ =
l(y) = gy(y,") € V* satisfies

. £(y)
F(y)=F = —. 1.12
W) =F© =35 (112)

Proof From the expression (1.10) we see that the Legendre transformation [ is

a smooth map from V\{0} to V*\{0}. In order to prove that it is a diffeomorphism,

we need to verify that it is both injective and surjective. Suppose that there exist
y,u € V\{0} such that I(y) = l(u), i.e.,

gy w) = gu(u,w), YweV.
Set w = u we obtain
F(u) = gu(u,u) = gy (3, u) < F(y)F(u),

and consequently,
F(u) < F(y).

Similarly,
F(y) < F(u).
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Therefore, F(y) = F(u), and

gy(y’ U) = F2(u) = F(y)F(u))

which together with Lemma 1.2 yields y = u, and hence [ is injective. Now we prove
that [ is also surjective. Note that S = {y € V|F(y) = 1} is a closed hypersurface
of V, for any £ € V*\{0}, there exists u € S such that

&(u) = F*(§) =supé(y)-
yeS

Let y = £(u)u, then

nw=«m=Fﬂo=%%. (1.13)

If £ = I(y), then [ is surjective, and the last formula is just (1.12). In the following
we want to prove £ = [(y), i.e.,

§(’U) = gy(y,v), YveV.

For any t € R, if y + tv # 0, then

y+tu o
' (m) < F*(€) = &(u),

and consequently,
E(y +tv) < F(y + tv)é(u).

On the other hand, above inequality obviously holds when y + tv = 0, and from
(1.13) we see that above inequality becomes an equality when ¢ = 0. As the result,
f=7f@t) :=£&y+tv) — F(y+tv)é(u) <0, and f attains its maximum at ¢t = 0.
From (1.1) and Euler’s lemma we have

gy(y,v) = 9i5(v)y"v’ = F(y)Fy (),
which together with the maximum principle yields
0= f(0) = £(v) — Fys (y)v'€(u) = £(v) — gy(y,v),

and the lemma is proved. O
Lemma 1.4 Let (V, F) be a Minkowski space, then the dual norm F* of F is
a Minkowski norm on V*, and for & = l(y), we have

g"9() = 5 [Fe, (6) = 97 (w), (1.14)

where (g (y)) = (9i5(y)) ™"
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Proof It is obvious that F™* satisfies the conditions (1) and (2) in Definition
1.1. Notice that the matrix (¢*/(y)) is positive, in order to prove the lemma we need
only to verify (1.14). Write

£ =6&0"=1(y) = (y'by),
then (1.10) yields & = g;;%7, and consequently,

43
oy’

(v) = gi;(y)-
From (1.12) one gets F?(y) = F*?(¢), which together with above formula yield
[F?] . (v) = [F*?], ()gri(v)- (1.15)

We see from (1.15) and Euler’s lemma that

1 1

g (©& =5 [F7], (©) = 56" W) [F*],: () =,

and thus
0gik 0gik 09i;
9T =Y 55 =Y g =0

Taking partial derivative with respect to y’ for (1.15) we get

9i5(y) = % [F*] sy ) = % [F*] 6, ©906W)gin(w) + % [F]e @) ?991;; )

= g"™ (g ()95 (v) + ™ (©)& %—%@’.ﬁ(y) = g**(€)gik ()91 (y),

thus (1.14) holds. O

By discussion above we know that the Legendre transformation [ : (V,F) —
(V*, F*) is a norm-preserving map. For £ € V*\{0}, denote by g*¢ the fundamental
form of V* with respect to &, then

g4 (¢ =g (OGm, ¢=GO', n=mnb"
It is clear from (1.10) and Lemma 1.4 that y = [~1(¢) is determined by

(y) =g"(,¢), VeV, (1.16)

namely,
y =171(6) = y*br = g*¥(£)&ibe. (1.17)

We can define the Legendre transformation [* : V* — V** and the Minkowski norm
F** on V** in a similar way. For any y € V, let y**(£) = £(y),V€ € V*, then
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y** € V**. Identifying y and y** in the canonical way, then V = V** [~1 = [*  and
F = F**,

Example 1.4 Consider the Randers norm F' = a + (3 on a vector space
V, where a is an Euclidean norm, and § a linear functional on V' with ||8||o =
SUPg(y)=1B3(y) < 1. Let by,---,b, be a basis of V' with dual basis LR L

Suppose that
a(y) = \Jayy'y!, Bly) =by', y=y'bs

then [|B|l« = \/a"b;b;, where (a¥/) = (a;;)~'. It can be verified by the method of
Lagrange multiplier that the dual Randers norm F* on V* is also a Randers norm,
i.e., F* = a* + 3*. Here the Euclidean norm o* and the linear functional 3* on V*
can be expressed by

o* () = +/a%itit;, B =b"4, E=t60',

where - N
iy _ (L= B2)a% + bt
(1-1slI2)*
. b’i
bn e ,
1—iBl%

and b® := a¥b;. Let (asi;) = (a*¥)~1, then
asij = (1= [|B]2) (@i — biby).
Consequently, [|3*[|ax := Supq.(¢)=1 B8*(£) satisfies
118* 12 ;a*ijb*ib*j
=7z (@ ~ b)Y = 1BIF,

which shows that the lengthes of § and * with respect to o and o* are equal. It is
easy to know from (1.8) and (1.10) that the Legendre transformation I : V — V* is
determined by

£ = 1(y) = 0,8 = F(y) (a(;’) + bi) o

while the converse transformation is

a*kl&

a*(§)

y=174(6) = g™ (©)erbk = F*(€) ( + b*k) tig.



