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PREFACE

The lectures in this volume survey recent important tendencies in some of
the active fields of research in ordinary differential equations. Taken together,
they provide a comprehensive introduction to the subject, suitable for study in
graduate seminars. They also provide a valuable resource for the active research-
ers in the field.

The paper of Lloyd Jackson surveys the subfunction method in two-point
boundary value problems. Introduced originally by O. Perron and F. Riesz in
studies of the Dirichlet problem, this method has emerged in the hands of
Jackson, his students, and other workers as a comprehensive and systematic
approach to a wide class of nonlinear, one-dimensional problems. In the lectures
Jackson has reworked much of the subject, creating a unified and esthetically
satisfying body of theory.

Both John Barrett and Douglas Willett deal with oscillation theory, though
In quite different aspects. Willett systematizes and unifies a considerable body of
recent results about the second order equation, often calling on ingenious tech-
nical devices to deal with highly complicated situations. Barrett’s notes represent
a pedigogical approach which he gradually refined in advanced seminars at the
University of Utah and later at the University of Tennessee. By treating a series
of prototype examples, Barrett gradually develops his reader’s powers, finally ap-
proaching the difficulties inherent in the oscillation theory for equations of
higher order than second.

It is the essence of singular perturbation theory that the perturbed bound-
ary problem is a different kind of mathematical object from the unperturbed, a
phenomenon associated with a change in order of the differential equation and
an accompanying loss of boundary conditions. This intriguing aspect, combined
with the pervasiveness in nature of asymptotically singular phenomena, has pro-
duced a voluminous literature, much of it having appeared since Wolfgang
Wasow's well-known and now classical study, Robert O'Malley’s article surveys
the recent developments in this rapidly growing subject.

The articles in this volume are all related in one way or another to the sym-
posium on ordinary differential equations held in Boulder in the summer of 1967.
That symposium, the first of the Rocky Mountain Summer Seminars, was orga-
nized under the auspices of the Associated Rocky Mountain Universities, and
financed by a grant from the Graduate Education Division of the National Science
Foundation. The lectures of Barrett and Jackson were actually delivered at the

1X



PREFACE

symposium, in much the same form as here. Willett's survey represents an elabo-
ration of an hour talk given at that time. O'Malley’s notes, which had appeared
earlier in mimeographed form, were the basis for one of several informal seminars
held during the symposium.

It is especially fortunate that John Barrett retained the energy to develop
through his symposium lectures and in these notes a definitive treatment of a

subject which now bears his permanent mark. It was a privilege for me to have
known this intelligent, considerate, and courageous man.
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Preface

The purpose of this article [a compilation of lectures originally
presented at the Associated Western Universities Differential _,quatlons
Symposium, Boulder, Colorado in the summer of 1967] is to give
motivating examples and ideas which have influenced the author in his
studies of oscillation properties of solutions of linear ordinary differential
equations. This 1s a subject where the mathematical tools needed are
relatively elementary but where it is easy to state an unsolved problem.
For example, the familiar second-order equation y” + g(x)y = 0 is still
a valid subject for research, although it has a voluminous literature.

As far as oscillation theory is concerned, most texts in Differential
Equations, both elementary and advanced, deal only with second-order
equations. A few deal with self-adjoint fourth-order equations and,
perhaps, those of arbitrary even order and systems of first or second-order

* We regret to report that Dr. Barrett died on Januarv 21, 1969, and therefore that
this paper 1s being published posthumously. We are grateful to Drs. John Bradley,
William J. Coles, and John W. Heidel for reading the proofs.



2 JOHN H. BARRETT

equations. Any discussion of oscillatory properties of third-order
equations or other nonself-adjoint equations is hard to find and that is the
lowest order where truly nonself-adjoint equations occur.

In this article an attempt is made to give a self-contained inductive
development from equations of one order to the next. Most of the
discussion will deal with equations of second, third, and fourth orders,
with linear systems of second-order equations and with generalizations
of those results to equations of higher orders. No attempt is made to
survey all of the oscillation theory of equations of orders higher than
four. Considerable attention is devoted to equations of order three
(Section II) and this is in line with the increased recent interest in these
equations, as the Bibliography will show.

Instead of the usual format where proofs follow the respective
theorems, motivating examples and developments of the ideas are given
first with statements of theorems following as summaries of what has
been established in the discussion.

. Second-Order Equations

Much of the material in this introductory section is contained in
introductory texts on Ordinary Differential Equations. Only those
topics are included which are pertinent to the succeeding discussion of
equations of higher order. For further oscillation theory of second-order
equations see Chapters I'V and XI of Hartman’s recent advanced text (47).

1.1. Basic Properties
The real linear second-order equation
bLly] = " + A(x) y" + B(x) y = 0;
(1.1) A and Be C(]), I = |a; b), a << b < oo,

18 equivalent to a special case of the canonical self-adjoint form:
(£5) Lyl =) -9y =0, r>0, r&gqe((),

where » = exp([A) and ¢ = 7B. A function y is said to be admissible for
the operator L, on an interval / provided y and ry’ € C[I]. Note that y”
need not exist when 7 1s not differentiable. A solution of (E,) is an
admissible function for L, satisfying L,[y] = 0 on I. Existence and
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uniqueness theorems for (£,) may be obtained easily from the equivalent
vector-matrix form

r 0 -l—
MY —q 0/ \D,y

Lemma 1.1. For any pawr of numbers (c,, c,) and each c €1l there
exists a unique solution of (E,) satisfying

¥e) = oy (V)O) =& -

‘T'here are several ways to transform (£,) back into the form (1.1).

Lemma 1.2. (a) If r € C'() then (E,) can be put into the form (1.1).
(b) If r is not differentiable then the change of independent variable:

(1.2) t= [ () =x=x0), V() = yla(0)]
yields the form (1.1)—uwith respect to t—without a middle term,
V40V =0, Q@) = (¢)()].

Note that Lemma 1.2(b) provides a method for removing the middle
term of (1.1) and differentiation of coefhcients 1s not required, as it is in
the standard variation of parameters substitution

Yy = U, v = (A/)2)w.

Integration-by-parts of zl[y] (or =zL,[y]), where 2 1s an arbitrary
function with the exhibited derivatives, yields useful Lagrange Identities.

Lemma 1.3. (a) If y,2e C'(1) then
shly] ={2y" — 2" + Ayzy’ + yl'[z],

where [,T[z] = (3" — Az)' + Bz, an adjoint operator of L, .
(b) If 2 and y are admissible functions for L, then

Lo[v] = [r(zy" — y2')]" + yL,[2].

Note that [,* = [, it A = 0, and in this special case /, and (1.1) are
self-adjoint. Since L, serves as its own adjoint operator, L, and the corre-
sponding equation (£,) are said to be self-adjoint.
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1.2. Factoring and Disconjugacy

The Polya-Mammana (73, 79) factored form of L, is easy to establish
and 1s actually a variation of standard Wronskian properties.

Theorem 1.1. [If L,jv] = 0and v = 0 on I' C I then

(a) vloly] = [vDyy — yDyo]

and
(1.4) Ly[y] = (1/o)[ro*(y/o) ]

for each L,-admissible y on I' and

(b) no nontrivial solution of (E,) has two zeros on I’'.

Definition 1.1. A second-order linear operator (e.g., L,) and the
corresponding homogeneous equation (e.g., £,) are said to be disconjugate
on an interval / provided that no nontrivial solution of the equation has
two zeros on [.

Let v, = v,(x, a) be the solution of (£,) defined by the initial con-
ditions:

(1.3) y@) =0 and  Dyy(a) = (rv')(a) = 1.
This solution 1s called the principal solution of (E,) at x = a and oscilla-
tion properties of (E,) can be given in terms of v,(x, a).

The Polya-Mammana factored form (1.4) may be used to prove the
following results which form a version of the Sturm comparison theorem.

Lemma 1.4. (a) If a < b << oo then the equation (E,) is disconjugate
on I = [a, b) if, and only if, the principal solution v,(x,a) > 0 on
I% = (a, b),

(b) If (£,) ts disconjugate on an interval I then
(£,) (ry') + qy = 0; g€ C(l) and gy <q on [

is disconjugate on 1.
(c) If, in addition, r << r; and r,€C(l) then

(£57) () +qv =0

1s disconjugate on 1.
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W. Leighton and Z. Nehari have 1solated a crucial part of the standard
proof of the Sturm Separation Theorem as a Fundamental Lemma and
applied it to linear differential equations of orders greater than two (70).

Lemma 1.5. [If u(x) and v(x) are differentiable functions on |a, c],
a < ¢, u(a) = u(c) = 0 and v(x) # 0 on |[a, c], then

(a) vu’ — uv’ = v¥(u/v) and their Wronskian uv' — vu' has a zero
on (a, c) and

(b) there is a linear combination 2 — u — kv which has a double zero
on (a, c) (i.e., at x = & € (a, ¢) where 2(¢) = 2'(¢) = 0).
Note that if # and o are also solutions of (£,) and a << ¢ << b then they
are linearly dependent, which contradicts the original assumptions of
[Lemma 1.5, thus yielding the Sturm separation theorem.

[Lemma 1.4(a) provides a method for proving oscillation theorems,
by use of nonlinear Riccati equations.

Lemma 1.6. Let y(x) be a solution of (E,) on I = [a, o©0), such that
y(a) = 0 and y'(a) > 0. If y(x) > 0 on (a, o) then

(a) h = —ry'|y satisfies a Riccati equation
(1.5) h' = q + (1/r)h? on (a, o0).

(b) If, in addition, y'(x) > 0 on [a, ) then [, q is bounded above on
[a, 00). On the other hand, if [, ¢ = oo then y'(x) has a zero on (a, )
and y(x) is bounded on |a, 0).

Once we have a zero of y'(x) we proceed to force a subsequent zero of
y(x). Hille (58) seems to have been the first to note the following property,
which was of considerable use to Nehari (75) and the author (8), for
establishing necessary conditions for disconjugacy of (£,).

Lemma 1.7. Let y(x) be a solution of (E,) on I = [a, o©) such that
y(a) > 0, y'(a) = 0. If y(x) > 0 and g(x) = 0, but == 0 for large x,
then D, y(x) = (r(x) y'(x)) < 0 on (a, ) and [, (1)r) < oo.

Theorem 1.2. If [, (1/r) = o, ¢ = 0 but #0 for large x, (E,) is
disconjugate on [a, o) and y(x) is any nontrivial solution of (E,) with
y(a) = 0, then y(x)y'(x) > 0 on (a, o).
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It 1s often useful to know that disconjugacy allows the construction of
a nonzero solution on closed or open intervals (68). Recall that the

converse (Lemma [.4) 1s also true.
The case of the finite closed interval i1s easy to prove. On the other

hand, if I/ = [a, b), a < b < o0, let x, €(a, b) and {x,} T b and y,(x)
be the unique solution of (£,) such that

y'n.(xw) — O, yﬂ(x) = 0 on [{1, x,”) and (Clﬂ)z + (an 2 __ l,

where vy,(x) = ¢;"u(x) + ¢,"v(x) and u, v 1s a given fundamental set
of solutions of (E,). There 1s a subsequence {#n;} of {n}, such that {c]/} and
{c}i} both converge, and these limits define a positive solution on
I° = (a, b), which may or may not be zero at x = a. Similarly, a positive
solution may be found for open intervals /1.

Theorem 1.3. [If (E,) is disconjugate on an interval I then there exists
a positive solution of (E,) on I for (a) I = [a, b], a < b << oo and (b)
I =(a,b), —0 <a<b< . (c) If I = [a,b) then there exists a
positive solution on I° = (a, b).

1.3. Oscillation

By combining I.emma 1.6 with Theorem 1.2 we have:

Lemma 18. If [, 1/r = o0, ¢ >0 and [, g = co then every
solution of (E,) has infinitely many zeros on |a, b).

This 1s a weak form of the Leighton—Wintner oscillation theorem. About
1949, both Leighton (67) and Wintner (/08) eliminated the nonnegative
condition, g(x) > 0. (See Theorem 1.2 below). However, the non-
negative coeflicient case 1s of special interest and 1s more readily
generalized to certain equations of higher order.

Definition 1.2. A second-order operator L,, or the corresponding
equation (E,), ts said to be oscillatory {nonoscillatory} on an interval I
provided that every solution of (E,) has infinitely many {at most a finite
number of } zeros on 1.

Although disconjugacy 1s an extreme case of nonoscillation they are
essentially equivalent for second-order equations.
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Lemma 1.9. If L,, or (E,), ts nonoscillatory on [a, c0) then there is
a number ¢ € (a, o0) such that L, , or (E,), 1s disconjugate on [c, c0).

Although 1t i1s well known that nonoscillation on [a, c0) 1mplies
disconjugacy for large x for second-order equations it was noted recently
by Nehari (77) that the analogous statement for equations of orders
greater than two 1s known to be true only for special cases. A useful
example and comparison equation 1s Euler’s Equation

(1.6) x2y" + ky = 0, k = constant,

which

(1) has solutions of the form x* where

o 1s real if & < §,

« 1s complex if £ > 1,

(i1) is disconjugate if & << 4 and oscillatory if & > 1 on [1, o0).

However, when (1.6) 1s put into the form (E,), with» = 1 and ¢ = k/x2,
it does not satisfy the hypothesis of Lemma 1.8 on [1, o) since [, g < o0
for all values of k, although we have oscillation for 2 > . The following
1s well-known.

Lemma 1.10. If [, (1/r) < w0 and [, | ¢| < oo then equation (E,) is
nonosctllatory on [a, o0).

Suppose that (£,) 1s nonoscillatory, 1.e., there exists a solution #(x) and
a number b € (a, c0) such that u(x) > Oon [b, o0). Theretore, h = —ru'|u
satisfies the Riccati Equation

(1.5) h’:ng%h? on [b, o).

Let [, ¢ = o0 and @ << b < o0, then there is a number ¢ € (b, ) such
that A(b) + [, ¢ > 0 on [c, o0) and hence,

h(x) > g(x) = F(l/r) B2>0 on [c o).
b
Consequently,

g > (l)r)g? and f (1 r)<@<w
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This proof for the following Leighton—Wintner Oscillation Theorem
was suggested by W. J. Coles.

Theorem 1.4. If [, 1/r = oo and [, ¢ = o0 then the equation (E,) is
osctllatory on [a, ).

This theorem 1s the principal motivation tor the discussion in the sub-
sequent chapters where higher-order analogs are established. Willet (107)
has recently pointed out that if [, (1/r) << oo then the transformation

o0 —1
(1.6) t = U (l/r)]
yields the following corollary of Theorem 1.4.

Corollary 1.4.1. If [, (1/r) < oo but

(1.7) fx' a(s) U (1/r)]2ds — o

4

then (E,) s oscillatory on [a, c0).

In the case of (E,), with r = 1 and ¢ > 0, Hille (58) achieved better
results than Lemma 1.8. Let [, (1/7r) = o0, ¢ = 0 but 0 for large x and
(E,) be disconjugate on [a, c0) and let y(x) be a positive solution (E,) on
(a, ). Then, by Theorem 1.2, # = —ry’/y < 0 on (a, ©0). Since
satisfies the Riccati equation (1.5), it follows that

W) = k@) = ¢ and [ (1)< 1)

(f

Theorem 1.5. If [, (1/r) = oo, q(x) = 0 but £0 for large x on
[a, 00) then a necessary condition for disconjugacy of (E,) on [a, 20) 15

(1.8) [ am [ g=1.

L 1

Hence, lim sup, . [, (1/r) [, ¢ > 1 is sufficient for oscillation of (E.,).

|.4. The Priifer Transformation

The change of variables to polar coordinates of a nontrivial solution

y(x) of Eq. (E,) 1n 1ts phase plane
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o) Cy(x) = p(x) sin 6(x),
' [Dyy(x) = p(x) cos 0(x); D,y =ry/,

1s called a Priifer Transformation, after H. Prifer who introduced the

idea in 1926 (80). The approach given here i1s due to W. T'. Reid (87) and

it 1s convenient for generalization to higher order self-adjoint systems.
Suppose that y(x) 1s a nontrivial solution of (£,) and let

(1.10) p(x) = V32(x) + (D) > 0.

Next normalize y and D,y by letting

(1.11) s(x) = v(x)/p(x) and s1(x) = Dyy(x)/p(x).
By differentiating (1.10) and (1.11) we have
(1.12) p'lp = (1/r — q) s,
and
(1.13) C] ) - (i?(x) b((f))(‘;) 3 () = (@) /r(x) + glx) s3(x).

Therefore, if 8’'(x) = b(x) then (1.9) 1s fulfilled and the Priifer differential

equations for (£,) are

(@) o = (12)[(1}r — g)sin 20]p,
(1.14) (b) 6" = (1/r) cos? 0 + ¢sin2 6
= (1/2)(1/r + q) 4 (1/2)(1/r — g) cos 26.

An alternate approach 1s to show that the nonlinear #-equation of
(1.14) has a unique solution for each given initial value of 6 at some a € /
and then to solve the other (linear) equation for p. Also, (1.14) may be
derived by differentiating (1.9).

Theorem 1.6. FEach solution of equation (E,) may be expressed by
(1.9) whose polar components satisfy (1.14).

Observe that if 6(x) 1s a solution of (1.14b) and 6(b) = k= then
0'(b) = 1/r(b) > 0.

Therefore, even though 6(x) may not be monotone 1t 1s always increasing
at multiples of 7, which has an important bearing on oscillation properties.



