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Preface

Complexity Science is the study of systems with many interdependent
components.

There is an urgent global need from industry, commerce, research insti-
tutions, academia, government and public services for a new generation
trained to understand how complex systems behave, how to live with
them, to control them and to design them well. We see this in public
service management, transport, public opinion, epidemics, riots, terror-
ism, weather and climate. Relevant technological developments include
distributed computing, data management, process control, personalised
medicine, disease management, environmental sensor swarms, complex
materials and nanobiotechnology.

Stimulated by problems from such a wide range of scientific disci-
plines, it presents great challenges and opportunities for Mathematics.
Mathematics is essential for a deep understanding of complex systems
and how to quantify their behaviour, for conclusions of genuine value to
end-users, because of its powers for description, abstraction, deduction
and prediction.

A range of Complexity Science concepts unify the field across disci-
plines: dynamics and diffusion, interacting agents and networks, coherent
structures, emergence and self-organisation, upscaling and model reduc-
tion, quantification of complexity, scaling and extreme events, probabilis-
tic modelling and statistical inference, feedback and control, diversity,
optimisation and evolution.

This volume presents coherent introductions to the mathematical treat-
ment of some areas of Complexity Science. It is based on some of the
lecture modules of the Warwick EPSRC Doctoral Training Centre in
Complexity Science.

Chapter 1 by Mario Nicodemi, Yu-Xi Chau, Christopher Oates, Anas
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Rana and Leigh Robinson introduces the key themes of Self-Organisation
and Emergence. It presents some of the basic examples and tools to
illustrate and analyse these phenomena.

Chapter 2 by Yulia Timofeeva treats Complexity in Deterministic Dy-
namical Systems. Dynamical systems are represented by mathematical
models describing phenomena whose instantaneous state changes over
time. Examples are mechanics in physics, population dynamics in biol-
ogy and chemical kinetics in chemistry. One basic goal of the mathe-
matical theory of dynamical systems is to determine or characterise the
long-term behaviour of the system using methods for analysing differ-
ential equations and iterated mappings. This chapter introduces some
of the techniques used in the modern theory of dynamical systems and
the concepts of chaos and strange attractors, and illustrates a range
of applications to problems in the physical, biological and engineering
sciences.

Chapter 3 by Stefan Grosskinsky treats Stochastic Dynamics of In-
teracting Particle Systems. These are lattice-based stochastic models of
complex systems, describing the time evolution of a large number of in-
teracting components or agents, which are simply called particles. The
notes provide an introduction to their mathematical description using
Markov semigroups and generators, and to basic probabilistic tools for
their analysis. The techniques are used to understand collective phe-
nomena and phase transitions as a result of local motion and interaction
of the particles for several classes of models. This discussion is mainly
example-based. It involves the role of symmetries and conservation laws
and provides a connection to concepts from equilibrium statistical me-
chanics discussed in Chapter 4.

Chapter 4 by Elldk Somfai treats Statistical Mechanics of Complex
Systems. This chapter starts by introducing equilibrium statistical me-
chanics via the maximum entropy principle. This is followed by a phe-
nomenological description of phase transitions and various applications
where dynamics plays a critical role, including interface growth and col-
lective biological motion.

Chapter 5 by Colm Connaughton treats Numerical Simulation of Con-
tinuous Systems. This chapter provides a foundation in practical meth-
ods of obtaining numerical solutions of partial differential equations that
arise in complexity science applications. The focus is on understanding
the advantages and limitations of numerical methods generally and on
selecting and validating an appropriate numerical algorithm when faced
with a particular problem. It starts with a basic outline of timestepping
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methods for ordinary differential equations, then proceeds to cover fi-
nite difference methods for hyperbolic and parabolic equations, explicit
versus implicit timestepping, issues related to stability, stiffness and
singularities, fast Fourier transform and pseudo-spectral methods. It is
example-based.

Chapter 6 by Vassili Kolokoltsov is on Stochastic methods in Eco-
nomics and Finance. It presents theory for utility, risk, optimisation,
portfolios, derivatives, fat tails, option pricing and credit risk.

Chapter 7 by Robert MacKay is on Space-Time Phases. The objective
is to put the concept of “emergence” onto a firm foundation in the
context of dynamics on large networks. The key notion is space-time
phases: probability distributions for state as a function of space and
time that can arise in systems that have been running for a long time.
The chapter has two sections, the first treating the stochastic case of
probabilistic cellular automata and the second the deterministic case of
coupled map lattices.

Chapter 8, also by Robert MacKay is on Selfish Routing. The chapter
is a summary of the very interesting theory of the gap between free mar-
ket and centrally controlled solutions for many agent systems in an ide-
alised case of traffic flow, following the excellent book by Roughgarden.

We are most grateful to Dayal Strub for typing up the notes of RSM,
preparing the figures for RSM and VNK, putting all the files together
into the required style and sorting out many issues with typesetting.

This work was supported by the Engineering and Physical Sciences
Research Council [grant numbers EP/I01358X /1 and EP/E501311/1]

R.C. Ball
V.N. Kolokoltsov
R.S. MacKay
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1

Self-organisation and emergence

Mario Nicodemi, Yu-Xi Chau, Christopher Oates,
Anas Rana and Leigh Robinson

Abstract

Many examples exist of systems made of a large number of comparatively
simple elementary constituents which exhibit interesting and surprising
collective emergent behaviours. They are encountered in a variety of dis-
ciplines ranging from physics to biology and, of course, economics and
social sciences. We all experience, for instance, the variety of complex
behaviours emerging in social groups. In a similar sense, in biology, the
whole spectrum of activities of higher organisms results from the in-
teractions of their cells and, at a different scale, the behaviour of cells
from the interactions of their genes and molecular components. Those,
in turn, are formed, as all the incredible variety of natural systems, from
the spontaneous assembling, in large numbers, of just a few kinds of
elementary particles (e.g., protons, electrons).

To stress the contrast between the comparative simplicity of con-
stituents and the complexity of their spontaneous collective behaviour,
these systems are sometimes referred to as “complex systems”. They in-
volve a number of interacting elements, often exposed to the effects of
chance, so the hypothesis has emerged that their behaviour might be
understood, and predicted, in a statistical sense. Such a perspective has
been exploited in statistical physics, as much as the later idea of “univer-
sality”. That is the discovery that general mathematical laws might gov-
ern the collective behaviour of seemingly different systems, irrespective
of the minute details of their components, as we look at them at different
scales, like in Chinese boxes. While the single component must be studied
on its own, these discoveries offer the hope that we might understand
different classes of complex systems from their simpler examples.
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A univocal definition of “complexity” can be elusive, but the above
criteria hopefully draw a line to distinguish, in a more technical sense,
“complex” from the much broader category of “complicated” systems.
Here we introduce some of the basic mathematical tools employed to
describe their emergent behaviours. We discuss some basic concepts and
several applications (e.g., Brownian motion in physics, asset pricing in
finance) of the theory of stochastic processes, which is presented more
generally in Chapter 3. We also consider some more advanced topics
such as statistical mechanics and its applications to define the emer-
gent properties in interacting systems. The foundations of statistical
mechanics are discussed in more detail in Chapter 4. Finally, we intro-
duce more recent topics such as self-organised criticality and network
theory.

The course was taught by Mario Nicodemi. The notes that form this
chapter were written by Yu-Xi Chau, Christopher Oates, Anas Rana
and Leigh Robinson, four students of the Complexity Science Doctoral
Training Centre of the University of Warwick who attended the lectures
in 2009.

1.1 Random walks

1.1.1 Introduction

Put simply, a random walk is a mathematical formalisation of a path
a “particle” traces out after taking a sequence of random steps. The
idea of a random walk is central to the modelling of a wide range of
phenomena, including financial modelling, the diffusion of gases, genetic
drift, conformation of polymers, and a large number of other applica-
tions where the phenomenon in question evolves by a random process
in time.

Various different types of random walk exist but can be grouped into
broad categories depending on what the random walker is said to “walk
on”, and how the time evolution is defined. For example, a random
walker may be defined on a graph that evolves in discrete time, moving
from one node to another in one discrete time step, or just as well defined
would be a random walker that moved in continuous time along the
whole real line, R. We shall give no further thought to these kinds of
random walks and restrict our discussion to ones that occur along the
integers, Z in discrete time steps.
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q q q q q q
P P p P P P

Figure 1.1 A discrete time walk on the integers, Z. Probabilities p
and g show how likely that transition is from state to state.

To understand perhaps the simplest example of a random walk we
imagine a particle that can inhabit one of the integer points on the
number line. At time 0 the particle starts from a specific point and
moves in one time step to its next position in the following way: we
flip a coin with the result governing how the particle moves. If the coin
comes up heads then the particle moves one position to the right while
if it comes up tails then the particle moves one place to the left. If we
make n such coin tosses then what will be final position of the particle?
Obviously being a random process we can't predict exactly where it
will end but we can say a good deal about the distribution of possible
outcomes.

1.1.2 One-dimensional discrete random walk

To try and answer such questions we need to introduce some formalism.
We define independent random variables, X;, that can take the values
—1 and 1, with P(X; = 1) =pand P(X; = —-1) =1—p=gq. The X,
represent the direction of the ith step of our random walk. Pictorially
we can represent this arrangement as shown in Fig. 1.1. To see how such
a system behaves statistically we calculate the first and second moments
and variance of X; as follows:

=S kP(X;=k), =1x P(X; =1) -1 x P(X;=-1) (L1)
—1-p=2p-1 (1.2)

With the second moment and variance given by
(X =p+(1-p)=1, (1.3)
Var[X,] = (X7) - (X)) =1— (2p — 1)? (1.4)

=1-4p* +4p—1=4p(1—p). (1.5)

We now define a new random variable, Z,,, as the sum of n such X;
variables and this defines the distribution of the value of the random
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walk after n steps:
=Y Xi,n>0. (1.6)
i=1

We can now look at some of the statistics of Z,, in particular the
average position, (Z,), and the variance: Var[Z,] of this position:

ZX Z(X)-—n(Qp—l),n>0 (1.7)

2=1
Since by definition each of the X;’s are independent the second mo-
ment can be easily calculated,

(Z0) = (Q X" =2 (XD +2 Z; (XiX;)  (18)
i= i=1 i=1 j=liZj
=n+n(n—1)(2p—1)% (1.9)
Hence,
Var|Z,] = (Z3) — ((Z4))* = dnp(1 — p). (1.10)
In particular, notice that
Var[Z,)  n, (1.11)

which gives us the result that the variance increases as we walk for more
steps. This has important consequences for finance as we shall see later.

Unbiased random walk
So far we have been considering a random walk with general transition
probabilities, p and g. The special case where p = ¢ = 1/2 is called
unbiased — since each decision is equiprobable. For these random walks
the statistical properties collapse to

{Z.) =0, (1.12)
Var[Z,) = (Z%) = n. (1.13)

From (1.13) we note that the root-mean-square of Z,, is simply /n,
which hints that the average absolute distance moved after n steps,
E[| Z, || = O(y/n). This is indeed the case, but will not be proven here.
Trajectories for a collection of unbiased random walkers are shown in
Fig. 1.2.

A further interesting property of unbiased random walkers is the no-
tion of recurrence. Imagine we choose any point, ¢ € Z. How many times
would you expect the random walker to cross this point if the walker



