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Preface

Our objective has been to present the basic facts concerning multi-

dimensional Gaussian distributions in a concise, crisp, and we hope elegant

‘form. We have restricted ourselves to properties that depend on the full
generality of a nondiagonal covariance matrix and do not consider, g
priori, problems where the n-dimensional distribution is the product of
n one-dimensional distributions.

The language of matrix algebra and linear vector spaces has been used
throughout. We have attempted to be extremely consistent in notation.
Capital letters are always used for vectors and matrices, and lower-case
letters are always used for scalars. Subscripts on vectors indicate the
dimension. We have resisted almost all temptations to abrogate our con-
ventions and yield to the exigencies of the moment, except at some points,
especially in Chapter 4, where custom dictates otherwise.

We assume that the reader is familiar with the elementary facts con-
cerning linear algebra and has some acquaintance with advanced calculus
and probability theory.

Chapter 1 is devoted to a discussion of quadratic forms, certain special
theorems in the theory of matrices, the covariance matrix, generalized
spherical coordinates, and certain integrals of quadratic forms. In Chapter
2 we define the joint normal distribution and prove various theorems
concerning Gaussian variates and linear combinations of Gaussian
variates. This is followed by a lengthy treatment of Rayleigh distributions
and distributions associated with the Rayleigh. We conclude with an
envelope-type distribution. In Chapter 3 we consider certain associated

v



vi PREFACE

functions such as the moment generating function and characteristic
function. We also develop the theory of regression functions and linear
least squares. The chapter concludes with a treatment of multidimensional
singular Gaussian distributions. Applications to Gaussian random noise
form the content of Chapter 4. The problem of estimating signal param-
eters in the presence of additive and multiplicative noise is considered.
We also examine the statistics of the output noise resulting from the
passage of a Gaussian process through a linear filter.

Equations are numbered by sections. In Section x of Chapter 4 we refer
to equation « simply as (). In Section 2 of Chapter 4 we refer to equation
B of Section y of Chapter A (with 2 3¢ ) as (y.8). In Section z of Chapter
A werefer to equation y of Section z of Chapter B (with 4 7 B) as (B.y.2).

K. S. MILLER
New York, New York
April 1963
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CHAPTER 1

Quadratic Forms

1. INTRODUCTION

The study of multidimensional Gaussian distributions is essentially the
study of a certain class of functions of # variables. These functions involve
a quadratic form ¢ in » variables and the determinant of the symmetric
matrix associated with g. It is therefore appropriate that we begin our
discussion with a brief review of certain salient properties of quadratic
forms. In Section 2 we outline and sketch some proofs of the necessary
critical formulas directly related to our future needs. Certain results in
elementary matrix theory will also be required. Some of these theorems are
perhaps not quite standard. We shall state and prove the requisite prop-
erties in a form immediately applicable to our subsequent developments
(Section 3).

If z,, x,, - * *, %, are random variables, then the mean or expected value
of x, is denoted by Ex,;, I =i = n. The covariance of z; and =, is

Cov (z,, ;) = E(r; — a)(z; — a;),
where Ex; = a; and Ez; = a;. The variance of z; is
Var z; = E(z; — a;)* = Cov (z,, z,)

and is always nonnegative. If we write Cov(z; x;) = m,;, then the
covariance matrix of z,, z,, - * - , z,, is the # X n (symmetric) matrix

M = Im;liqiicn
1



2 MULTIDIMENSIONAL GAUSSIAN DISTRIBUTIONS

where m,; is the element in the ith row and jth column of M. Certain
definitions and properties associated with covariance matrices are treated
in Section 4. _

Frequently we have occasion to consider n-fold integrals of functions
of quadratic forms. In order to evaluate these integrals it will be con-
venient to introduce certain changes of variables. Specifically, the analog
of classical three-dimensional spherical coordinates in n dimensions will
be a particularly useful transformation. Following Blumenson [A deri-
vation of n-dimensional spherical coordinates, American Mathématical
Monthly, 67, No. 1, 63-66 (1960)] we shall deduce the appropriate
coordinate changes using the methods of finite-dimensional vector spaces.
This is done in‘Section 5. Finally, in Section 6, we shall evaluate certain
integrals involving quadratic forms.

2. QUADRATIC FORMS

If P is a matrix, we shall denote its transpose by a prime: P’. In
particular, unprimed vectors will always be assumed to be column
vectors; and hence primed vectors are row vectors. We shall consistently
use capital letters for vectors and matrices and lower-case letters for
scalars. Let M = Imyl,_,;., be an n X n symmetric matrix and
X = {z), z,,- - -, z,} a column vector. Then

a(X) = X'MX = 3 myxz,
t,j=1
is called the quadratic form associated with M.
Let P be a nonsingular n X n matrix and consider the transformation
X=PY or Y=PX.
Then
4(X) = (PYYM(PY) = (Y'P)M(PY) = Y'(P'MP)Y = g¥(¥),
and ¢*(Y) is the quadratic form associated with M* = P’MP. Clearly
M* is symmetric since (P"MP) = P’"M'P = P°"MP = M*.

We shall now assume that all entries in our matrices belong to the field
of real numbers. Let M be a symmetric n X » matrix and g(X) = X'MX
the associated quadratic form. Then one of the principal results in the
elementary theory of quadratic forms states that g(X) may be reduced to
diagonal quadratic form by nonsingular linear transformations. Precisely
worded, if g(X) is not identically zero, then there exists a nonsingular
matrix P such that if X = PY, then the quadratic form ¢(X) may be
written

gqX)=Y'(P'MP)Y=3dy:, d;#0, 1=Zisr=n (1)
i=1



QUADRATIC FORMS 3

where Y = {y,, 4,5, " *, ¥,}. We shall sketch a proof of this important
result.

Suppose first that the coefficients of the quadratic terms 27 are not all
zero. Without loss of generality suppose m;; # 0. Then

n n
a(X) = my2} + 23”1{22’”11'% + zsmu“’i"’r
= 1,i=
Completing the square,

n 2
q9(X) = my, (‘tl + mIll szlixi) +q'(X) 2

where ¢’(X) is a quadratic form involving only «,, 2;, - - -, z,. If we make
the nonsingular linear transformation

n
_ 1
Y1 = 2 + my > myx;
i=e

Y= 2=j=n,

then (2) becomes
9(X) = muy; +q'(Y), my #0,

where ¢'(Y) is a quadratic form in the n — 1 variables y,, ¥, - *, ¥,
If my; =0, 1 <i=n, then there must be some m,; # 0 with i 7 j
since ¢(X) # 0. Suppose without loss of generality that m,, 7% 0. Then

g(X) = 2mygxix, + g¥(X), : 3

where g*(X) does not involve #%, 2} or z,7,. The nonsingular linear
transformation-

Y1=12, + 23
Yg=2, — 2y
ya‘:xj) 3§j§ns

reduces (3) to
9(X) = dmyay? + q'(Y)

where ¢'(Y) does not contain y3. One can then proceed as before.

The number 7 of nonzero diagonal terms in (1) is called the rank of the
form g and is invariant under nonsingular linear transformations. From
(1) we see that P’MP is a diagonal matrix. Since P’MP is nonsingular if
and only if M is nonsingular, it follows that g(X) has rank 7 if and only
if M is nonsingular. It also follows from (1) that, by trivial, real, non-
singular linear transformations, g(X} may be reduced to the form

qX) =22+ +- -+~ (Rt + + D)

The number p of positive squares is an invariant of the quadratic form.
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The difference between the number of positive and negative terms in g
is s=p —(r — p) =2p — r, where r is the rank of g. We call s the
signature of q.

If the signature and rank of a quadratic form are equal, then we say

that the form is nonnegative definite or positive semidefinite. Thus if g(X)
is nonnegative definite,

aX)=z2+zn+ "+, r=n C)
If r = n, then we call g positive definite. A symmetric matrix M is called
nonnegative definite if and only if X’M X is nonnegative definite and is
called positive definite if and only if X'M X is positive definite. It easily
follows that ¢(X) = X’MX = Xmz ., is nonnegative definite if and only
if g(X) = Ofor all X. Ifg(X) = 0if and only if X = O, then it follows that
q(X) is positive definite. Thusa nonsingular nonnegative deinite symmetric
matrix is positive definite.

If a symmetric matrix M is positive definite, then it follows from (4)
that there exists a nonsingular linear transformation P such that P’MP
is the identity matrix I, ,
P’MP = 1. &)
Thus a symmetric matrix M is positive definite if and only if there exists
a nonsingular n X n matrix Q such that '

M=00. (6)

If M is a symmetric matrix, then there exists an orthogonal matrix R
(that is, R’ = R such that

RMR =D, @)
where D is a diagonal matrix. In fact
D =14 d;hi<i i5m

where the A, 1 <i < n, are the (necessarily real but not necessarily
distinct) characteristic roots of M (and d,; is the Kronecker delta). Thus
we may state that M is positive definite if and only if 4, >0, | S i=n.

For a further discussion of the results of this section we refer the reader
to Birkhoff and MacLane (4 survey of modern algebra, The Macmillan
Company, New York, 1953, Chapter 9); Bocher (Introduction to higher
algebra, The Macmillan Company, New York, 1907, Chapters 10 and 11);
Finkbeiner (Introduction to matrices and linear transformations, W. H.
Freeman and Company, San Francisco, 1960, Chapter 9); and Hohn
(Elementary matrix algebra, The Macmillan Company, New York, 1958,
Chapter 9).
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3. SOME MATRIX THEOREMS

Certain results from matrix algebra will be needed from time to time
in our future work. In order not to interrupt the continuity of our
development we collect the pertinent formulas in this section. They
include two cases of Shur’s identity and a special form of Jacobi’s theorem.
We also discuss the important problem of differentiating a scalar with
respect to a matrix,

The proofs of the lemmas are most conveniently carried out using
partitioned matrices. Let M, = Iml, ., ;<, be a positive definite n X n
symmetric matrix. Partition the matrix M, as

(D

'
Tz’ ; Sn—»

where M, = Im;l,_,;., is the p X p matrix in the upper left-hand
corner of M,, S,_, is the (n — p) X (n — p) matrix in the lower right-
hand corner of M,, T, is the p X (n — p) matrix.in the upper right-hand
corner of M, and T, the transpose of T, is the (n — p) X p matrix in
the lower left-hand corner of M,,. Since M, is symmetric, M, = M, and
Spn=1>5,

The matrrx M, is nonsingular by hypothesis, and hence M, ! exists.
Write M1 as the partitioned matrix

2
R, | P;l,

where Q"' is the p X p matrix in the upper left-hand corner of M,;"?, P,,‘_lp
is thé (n — p) X (n — p) matrix in the lower right-hand corner of M, !
R is the p X (1 — p) matrix in the upper right-hand corner of M, and
!, the transpose of R,, is the (n — p) X p matrix in the lower left-hand
corner of M, \. Since Mn is symmetric, @, = Q, and P,_, =P,

n—p*
Using this notation we shall prove the following three lemmas.

LEMMA 1. P, R, = —T M.
LEMMA 2. Q. '= M,' + R,P, ,R,.
LEMMA 3. |P,_,| = [M,| M|

The first two lemmas are called Shur’s identities, and the last is a special
case of Jacobi’s theorem. (The bars in Lemma 3 denote determinants.
Thus, if 4 is a square matrix we write det 4 or |4] to indicate the deter-
minant of 4.)
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Proof of Lemma 1. We have
-1
MM = I, &)

where 7, = 1,1, ., ;<. 15 the n X n identity matrix. Using (1) and (2)
we may write (3) in expanded form as

n—p

M,0;* + TR, | M,R, + TP}

1

—1
'n—'ﬂPﬂ—'D |

o

|
n—p,p .

T,0;" + S.uR; | T,R, + S

n—p

Equating the terms in the upper right-hand corners of the matrices of
(4) we obtain

M,R, + T,P;l =0

n—p

».1-p &)

MDsz = —Tpp;izz' (6)

Multiply on the right by P,_, and on the left by M, '. The transpose of
this resulting equation is Lemma 1.

i

or

Proof of Lemma 2. Equating the matrices in the upper left-hand corners
of the partitioned matrices of (4) we may write

M,0;' + TR, = I, (M
Multiply on the left by M,! to obtain

o= M;' — M;*TR,. (8)
ButbyLemmal, M, 'T, = —R, P, ,. Substitutingin (8)yields Lemma2.

Proof of Lemma 3. Let K, be a p X (n — p) matrix which we shall
specify later. Then

M, | K, |l |o;'] R,
On*—ﬂ.? E P'ﬂ_Pl RD, E P;19
M,0;' + KR, | M,R, + K,P.2,
= ] 9
Pn_,,R, | I,,_,,

Choose K, such that the matrix in the upper right-hand corner of the
partitioned matrix on the right-hand side of (9) vanishes:
MR, + K,P;l,=0,, ,
Then
K,=—M,R,P, ,,
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and the term in the upper left-hand corner of the matrix on the right-hand
side of (9) becomes

M, ;1 + K,R, = MmQ;1 — M,R,P, ,R,

= M:J(Q;l — R,P, R} = MnM;l =1,
by Lemma 2. If we take the determinant of both sides of (9), we obtain
(M Py ol M7 =1,

which proves Lemma 3.

We now turn to the problem of differentiating a scalar function of a
matrix with respect to that matrix. Let v = g(X) be a scalar function of
the m X n matrix X = lz;l; o, 12550 We define dv/dX as the m x n
matrix
Ov
dx;;

3

where thez;;, | =i = m, 1 < j < n, are to be thought of as mn independ-
ent variables and the 0v/0z,; are assumed to exist.
The most common situation arises when X is a column vector,

X={z, 2, -,z

and g(X) is of the form X’MX or X'A where M is an n X n symmetric
matrix and 4 is an n-dimensional vector (both independent of X). It is
easy to verify that in these cases

d
— (X'MX) =2MX 10
¢ ) (10)

and

d d
h X' A4) = A'X) = A. 11
dX( ) dX( ) (i

4. COVARIANCE MATRICES

Let z,, x5, "+, x, be n random variables with means a,, @,,* -+, a,
respectively. Then their covariance matrix M, is defined as .

Mn = E(Xn - An)(Xn - An)l = IE(xt - ai)(xi - ai)Iléi,_’isn

= ICov (z,, zi)llgi,ign = Imijllgi,:’§w

where X, = {z;,%,, -, 2,} and A, = {a,, a5 --,a,} are column
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vectors. Clearly a covariance matrix is symmetric. It is also nonnegative
definite, since

0 = E[Z)(X, — A = B{Z (X, — 4,)[Z,(X, — 4,)]'}
= Z',nE(X'n - An)(X'n - An)lzn = Z;anfn

for any vector Z,, = {2,, 23, * * *, Z,}. A nonsingular covariance matrix M,
is therefore positive definite. In such cases M;! is also a symmetric
positive definite matrix.

If M, is positive definite, we can always choose n linear combinations of
the z; which are uncorrelated (that is, have a diagonal covariance matrix).
For suppose M, is positive definite. Then there exists a nonsingular
n X n matrix @, such that

M, = 0.0,

Y, = Q"n—lxn

[compare (2.6)]. Let
and
B, = EY, = 0, 'EX, = 04,
Thus if N, is the covariance matrix of Y,
N, = EY, — BXY, — B,) = E(Q;'X, — B,XQ,'X, — B,)
= Q'E(X, — AXX, — 4107 = 0.7'M, 077
= 0.7'0.0.0" = 1.
A further refinement of this result is obtained by using orthogonal
transformations. Suppose Y, = {yy, y5, - * * , ¥} is a random vector with

mean vector B, = EY, = {b, b,,---,b,} and diagonal covariance
matrix yol, = lyed;l; <, ;<. Where y, is a positive constant. Let

Z,=R,Y,
where R, is an orthogonal n X n matrix. Then
EZ, = R,EY, = R, B,
- and the covariance matrix P, of Z,, is
P, = E(Z, ~ R,B)Z, — R,B.) = R,[E(Y, — B)XY, — BYIR,
= R, ol R, = yoR,R;, = 9oR,R,;" = ‘Poln-

Thusif Y, and Z,arerelated by an orthogonal transformation, Z,=R,Y,
and if Y, has the diagonal covariance matrix y,/,; 'then Z, also has
wol,, as its covariance matrix.
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5. GENERALIZED SPHERICAL COORDINATES

In certain multiple integrals involving functions of quadratic forms
in n variables we shall have occasion to make changes of variables. One
important transformation is the analog of spherical coordinates in three
dimensions. The generalization of spherical coordinates to n dimensions is
by no means unique. For example, the following three transformations are
all examples of ‘“‘generalized” spherical coordinates in five-dimensional
Euclidean space ¥5;

x, =rcos ¢,
T, = rsin ¢, cos ¢,
(5) @y = rsin ¢, sin ¢, cos ¢
x, = rsin ¢, sin ¢, sin ¢z cos 6
x; = r sin ¢, sin ¢, sin ¢ sin 0

x, = rcos &
x, = rsin &, (cos 7 cos {)
(Sy) x3 = rsin & (cos % sin )

x, = rsin & (sin 7 cos v)
x5 = rsin &; (sin 7 sin v)
x, = rcos a, (cos ff)
x, = rcos a, (sin f§)

(Sy) x5 = rsin «; [cos a,]
z, = rsin o, [sin &, cos y]
zs = r sin a, [sin a, §in y].

The first two represent a decomposition of the five-dimensional sphere of
radius r into a one-dimensional and a four-dimensional sphere. In S,
the four-dimensional sphere is decomposed into a one-dimensional and
a three-dimensional sphere; in S, the four-dimensional sphere is de-
composed into two two-dimensional spheres. The third transformation
Sy is a decomposition of the five-dimensional sphere of radius r into
a two-dimensional and a three-dimensional sphere. [See, for example,
Shelupsky, An introduction of spherical coordinates, American Mathe-
matical Monthly, 69, No. 7, 644-646 (1962). There seems to be an error
in his formula for the number, s,, of distinct coordinate systems in
¥™.] For our purposes the first, S;, is the most natural and most useful
generalization. We shall derive this case in n-dimensional Euclidean space
¥°" by the techniques of linear algebra.

We begin our derivation by recalling a few definitions. If V, =
{vy, vg, - -+, v,} and W, = {wy, w,, - - -, w,.} are column vectors, then

VW, = W,V, =Z UsWy

=1
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is called the inner product of V,, and W,. We write

WVal* = ViV, =3 o}
=1
and call |V,|, the nonnegative square root of B, »2, the norm of V,.
The angle ¢ between two nonzero vectors ¥, and W, is defined by

VW,
cosp=—2""- O0=Zd=m
IVal IV,
Let EM, E®, - -+, E™ be an orthonormal basis in an n-dimensional

unitary space ¥"* (that is, ESVEY =8, 1 £i,j < n). Let X, be any
vector on the n-dimensional sphere of radius r with center at the origin.
Then |X,] = r, and if

n
X, =Y xED, , (1)
. =
we have !

[X 2= 27 =r?,
i=1
Let 8, be the angle betweeén X, and E{’. Then

X’ E(i') 2
cos ﬂ‘, ikt S
r

= ==, 0=<6,5n,
| Xl IED|

)

since [E{)] =1 and X,E® = z, by virtue of the orthogonality of the
EQ®. Hence (1) implies

X, =r3cosf, EY ()]
=1 '
Thus X, may be specified by giving its length r and the z angles 6;. Since

n
= X,X,=r"3cos?,

i=1
we see that the 6, 1 =i < n, are not independent. Our derivation of
spherical coordinates will show how to choose n — 1 angles ¢,, ¢, - -,
é,_s 0 which are independent of each other and which, when combined
with the norm r, completely describe the vector X, with respect to the
given orthonormal basis, EM, E®, - - -, EW,

Let E®, 1 < i =< n, be an orthonormal basis. Let X, be a vector on

the sphere of radius r with center at the origin. Let ¢, be the angle between
X, and E(Y. Then [compare (1) and (2)],

n
X,=rcos EL +YzEY, 0=Z¢ = 3)

=2



