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Preface

This text was compiled as a result of an invitation from Helsinki University of
Technology to give a lecture course in "Practical Reactor Design", to follow on
from their existing undergraduate introductory course as a senior course, also
open to industrial participation.

There are a number of texts on reactor design now available, all of which cover
the basic principles of the subject and discuss the present state of the art in
various aspects of reactor engineering research. However, since reactor engineering
research has moved from solving problems of practical interest to solving problems
demanding high intellectual challenge, the available texts do not contain enough
practical information to teach students how to design and specify reactors, or
even to know the techniques by which this is done in technically advanced
companies.

It is this void that this text is trying to fill.

In practice, reactor design usually starts by obtaining laboratory data from a
new reaction system. It then sorts out the important factors, predicts a full-
scale performance, and if this is attractive the pilot reactor is designed and
operated. Data from the pilot reactor are then used in addition to Taboratory
data to design and predict the performance of a full-scale reactor that will work
as optimally as possible, based on an economic criterion, and be easily operable
and safe.

The engineer is best confronted with reactor problems at an early stage, when
the chemist is going to look for good operating conditions, or even before, when
he is thinking about the "reaction mechanism". The engineer can contribute to
the search for optimum conditions, since he can bring economic factors into the
picture and often has a numerate training which helps in the experimental planning
and analysis of results.

The engineer produces a model from the laboratory results and uses this model
for the design of his pilot and full-scale plant, for the choice of optimum
conditions and for the stability analysis.

Reactor design in practice is concerned with the laboratory determination of
data, their analysis, the development of models of the chemical and physical
processes occurring, their optimization, the hardware dimensioning, and the
definition of the necessary control and safety systems.

A text describing these activities touches on a multitude of disciplines -
statistics, economics, optimization, control, and safety, as well as those subjects
traditionally thought of as reactor design. This is an advantage for a senior
course in that it is bringing together separate earlier courses, to show how, in
practice, they are all needed to solve real problems.
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The text was prepared for a 36 hours course plus nine two-hour exercise
sessions. Since much of the course emphasized computer methods, the majority of
the exercises were computer-based and run interactively with three or four
students at each terminal. The nine exercises are included as Appendix 3, together
with the programs used for the computer-based exercises.

The questions included at the end of each chapter are simply to emphasize the
main point of that chapter and can be used by the reader to check that he has
grasped the points that were being made.

It was the intention to compile a text of about 450 pages surveying the whole
area of reactor design. When this is divided into topics and then further
subdivided to produce a balanced text, it is surprising how few pages remain for
the subjects that occupy volumes in the research literature because of the few
recommendations that result from this activity. Whenever possible, only industrially
tested techniques are, described. When untried though promising methods are presented,
a warning is given in the text. Since this is not a research text, no effort is
made to substantiate the points made by reference to original literature. "Further
Reading" Tists are given where most points can be found discussed in more detaii.
and references are given only when the work would otherwise be difficult to find.

This "textbook" appears as a monograph because of the general feeling that not
many teachers will be able to integrate this type of material into their present
"reactor engineering" courses. If those teachers who do achieve this would contact
the publishers, this would give some indication of the need for a textbock edition.

I would Tike to record my thanks to the staff of TKK Helsinki who made my stay
in Finland so interesting and enjoyable - particularly to Professors B-son Bredenberg
and Jdarveldinen, who arranged for the reactor design course to take place, and
J. Aitamaa, who put much of his time into preparing the programs for the computer
exercises.

Particular thanks are due to Elfriede Kilian for taking the major typing load
and to Sirpa Pauni, who transferred some of my hand-written notes to typed text
by a very novel, though somewhat laborious process.

Zurich, May 1981 L.M. Rose
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K (Kys K

empirical constant

interfacial area/unit volume
cross-section area

pre-exponential factor (of reaction i)
heat-transfer area

empirical constant

empirical constant

cash flow for year i

mass specific heat at constant pressure
molar concentration (of component A)

dg)

diameter of particle, bubble, tube, impeller

or equivalent diameter

reactor diameter

molecular diffusivity (of component A)
activation energy (of reaction i)
enhancement factor

fanning friction factor

fraction capital costs incurred annually
molar flowrate

objective function

tax factor

gravitational constant

heat generation/unit reactor volume
heat removed/unit reactor volume

mass flowrate (gas)

free energy

single film heat-transfer coefficient
enthalpy

Henry's law solubility constant

heat of reaction (of 1th reaction)
investment cost

reaction rate constant (of ith reaction)
gas film mass-transfer coefficient
liquid film mass-transfer coefficient

equilibrium constant (based on activity,
concentration)

overall gas mass-transfer coefficient

Xix

kd kg~1 K71
kmol m-3

m
m

m2 s~ 1

kJ kmol-1

9.8l ms~2

kd m-3

kd m=3

kg s°1

kJ kmol~1

kW m~2 K1

kd kmol-1

bar m3 kmol-!

kJ kmol~1

$

kmo1(1-n) m3(n-1) g-1
kmol m=2bar-1 g-1
ms-1

kmol m=2 bar-! s-1



XX

KI, KII, KIII

e e B T
-

w

—A4 A4 H A+ A+ N N »
- O M e &

4

Wy U
Ugs Ups Uy

absorption coefficient
miscellaneous constants

length

catalyst Tife (number of half lives)
project life

mass flowrate (liquid)
lifetime for taxation purposes
molecular weight (of A)

number of kmoles (of A)

molar flowrate (of A)

stirrer speed (RPS)

number of tubes, number of beds, number of tanks
dimensionless group in Calderbank's surface

area equations

agitator power number

Reynolds number

partial pressure (of A)

total pressure

agitator power (ungassed and gassed)
power supplied by gas

volumetric flowrate

fractional rate of interest

recycle rate

molar reaction rate/unit reactor volume
fractional taxation rate

gas constant

tube pitch

stirrer tip speed

entropy

selectivity

time

half-life time

residence time in the film
residence time of the reaction
mean residence time of a distribution
temperature

production

velocity

superficial, terminal, minimal velocity

bar~!

m

years

kg 51
years

kg kmol ™1
kmo1

kmol s~1

s'l

bar

bar

kW

kW

m3 g~1

kmol s~!
kmol m™" s~!

8.314 kJ l§m01'I K!or
0.08314 bar m? kmol-1 K-!

m

m st

kJd K= kmo1-!
s

s

s

S
K

kmol s~! or
tons year~!
ms-!

ms °
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GREEK LETTERS

SUBSCRIPTS

B; B .as
amb

overall heat-transfer coefficient
volume

reactor volume

width

weight

independent variable

mole fraction in liquid (of A)
fractional conversion (of A)
dependent variable

mole fraction in gas (of A)
film thickness

empirical constant

gas hold up in gas/liquid dispersions
void fraction in packed bed

thermal conductivity

reduced time

dynamic viscosity

stoichiometric coefficient (-ve for reactants)

surface tension
3.1416

mass density
space time

effectiveness factor (gas/solid reactions)

pellet temperature rise factor
Thiele modulus

for components A, B ...

ambient conditions

in bulk (fluid)

in gas phase (or in presence of gas)
. th .

for i reaction

of inlet
.th .

for j~ species

of jacket

in liquid phase

at initial (or reference) condition

xxi

kW m™2 K-1
m3

m3

m

tons
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out of outlet

R of reactor

S at solid surface, of solid
S for standard case

U for utilities

W at wall

GENERAL NOTE ON UNITS

SI units have been used throughout, but in order to be able to deal with
conveniently sized numbers the following have been consistently used: m, kg,
kmol, kJ, kW, s, K, bar.
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