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ABSTRACT
THE GC3 FRAMEWORK
GRID DENSITY BASED CLUSTERING FOR CLASSIFICATION OF STREAMING
DATA WITH CONCEPT DRIFT
Tegjyot Singh Sethi
July 24,2013

Data mining is the process of discovering patierns in large sets of data. In recent
years there has been a paradigm shift in how the data is viewed. Instead of considering
the data as static and available in databases. data is now regarded as a siream as it
continuously flows into the system. One of the challenges posed by the stream is its
dynamic nature, which leads to a phenomenon known as Concept Drift. This causes a
need for stream mining algorithms which are adaptive incremental learners capable of

evolving and adjusting to the changes in the stream.

Several models have been developed to deal with Concept Drift. These systems
are discussed in this thesis and a new system, the GC3 framework is proposed. The GC3
framework leverages the advantages of the Grid Density based Clustering and the
Ensemble based classifiers for streaming data, to be able to detect the cauge of the drift
and deal with it accordingly. In order to demonstrate the functionality and performance of’
the framework a synthetic data stream called the TISS stream is developed. which

embodies a variety of drifl scenarios, and the model’s behavior is analyzed over time.



Experimental evaluation with the synthetic stream and two real world datasets
demonstrated high prediction capability ol the proposed system with a small ensemble
size and labeling ratio. Comparison of the methodology with a traditional static model
with no drifts detection capability and with existing ensemble techniques for stream
classification, showed promising results. Also, the analysis of data structures maintained
by the framework provided interpretability into the dynamies of the drift over time. The
experimentation analysis of the GC3 framework shows it to be promising for use in
dynamic drifting environments where concepts can be incrementally learned in the

presence of only partially labeled data.
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CHAPTER 1

INTRODUCTION

1.1 Stream data mining and its challenges

A data stream refers to a continuous [low of ordered data records in and out of a
system [1]. With the growth in sensor technology and the big data revolution, large
quantities ol data are continuously bemng generated at a rapid rate. Whether it is from
sensors installed for traffic control or systems to control industrial processes, data from
credit card transactions to network intrusion data, streaming data is ubiquitous. Today
almost all forms of data being collected is streaming as we do not stop collecting data 10
make analysis on it, but instead the analysis and the data collection happens
simultaneously. This poses a major challenge with the timeliness of the prediction results.
The analysis results from historical data would fail to account for the current state of the
system and as such will not be totally reliable. Also the rate at which this data is being
generated (real time in many cases) is much higher than the rate at which it can be
analyzed by traditional data mining technigues.

In such a dynamic environment, the basic tasks of Data mining such as Clustering,
Classification, Summarization. cte. are no longer trivial. There is a paradigm shift from
the traditional technigues where the system is presented with all the historical data and a
model is built on it. using if needed a validation set, and this model once built is used
without change for all future predictions. Such a static model does not fit well in the real



world scenario as the data encountered in most cases is itself dynamic and embodies

constant changes in the environment. Also, the huge amount of data flowing into the

system poses practical restrictions on the memory and the amount of data that can be

stored and processed at each time interval. Thus the algorithms for stream mining need to

be more selective as to what data they store and what they disregard.

All these concerns have led to a lot of research in the recent years (o overcome these

challenges posed by streaming data. The main characteristics of streaming data that need

to be addressed by any model developed was described in [1,2] and is summarized below.

Scalability and Response Time: As the data stream may, in principle, be an
infinite source of data, it is not possible to store all the data for performing the
analysis. Thus the model needs to analyze data in chunks and store only a very
small portion of this data in the main memory. Also, since the data 1s
continuously pouring in, the response needs to be in near real time in most cases,
for it to be of any practical usc.

Robustness: Any real world process is bound to exhibit noise and distortions in
the data being generated. A system needs to be robust to these factors and work
even in the presence of such changes. This problem is even more challenging in
case of streaming data, as the data is dynamic and it 1s necessary to distinguish
the noise from the changes in the environment. The model needs to balance
between being overly sensitive to noise and at the same time being able to detect
changes and learning from them.

Concept Drifi: The major challenge with streaming data is that of adaptability.

The distribution generating the data might change over time and the model



generated needs to detect and adjust to such changes automatically. This is whal

makes mining of streaming data different from traditional mining techniques,

This change in the generating model with the passage of time is known as
Concept Drift.

In this thesis the challenge posed by Concept Drift is considered. The GC3

incremental learning lramework is proposed to detect and adapt to ¢changes in an evolving

data stream.

1.2 Formal Problem Statement: Classification of Streaming Data

The data mining task considered here is: Clagsification. A stream of data is
evaluated one at a time and the class label associated with cach sample is estimated. A
good model would provide high estimation capability within the limitations ol time and
MEMOry resources.

Consider a stream of samples represented by Xi. Xa,... Xur ¢ where X is a vector
representing an input sample. Fach X has an associated Yy which is its class label.
Furthermore consider the value initial train stream, For all X, j< initial_train_stream.

the corresponding Yy are available. For Xj . j= initial_train_stream, only a few of the Y3

are available. The task is to predict these Yy 's given only the prior information about the
samples. Probabilistically the task of classification is the probability that the class label is
Yy given the sample is X denoted by the conditional probability p(¥y| A7)

When dealing with static data, the common assumption is that the probability
distribution ol the data does not change with time. i.e. p( Y] X:) =pii(Y] X.). However, in

case of streaming data with concept drift, this assumption is not valid as the distribution



