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Preface

This is the second edition of a text that is intended for a one-semester course in algebraic
number theory for senior undergraduate and beginning graduate students. The Table of
Contents on pages vii-viii is essentially self-descriptive of each chapter’s contents, requir-
ing no need for repetition here. What differs from the first edition deserves elucidation.
Comments from numerous instructors and students over more than a decade since the first
edition appeared have given way to a new style, methodology, and presentation.

The focus has changed from the first edition approach of introducing algebraic numbers
and number fields in the first two chapters and leaving ideals until Chapter 3, to the second
edition strategy of looking at integral domains, ideals and unique factorization in Chapter
1 and field extensions including Galois theory in Chapter 2. This changes the first edition
method of having the entirety of Galois theory relegated to an appendix and bringing it,
in this edition, to the main text in a more complete, comprehensive, and involved fashion.
Chapter 3 in this edition is devoted to the study of class groups, and as a new feature, not
touched in the first edition, we include the study of binary quadratic forms and comparison
of the ideal and form class groups, which leads into the general ideal class group discussion
and paves the way for the geometry of numbers and Dirichlet’s Unit Theorem. In the first
edition, this was done in Chapter 2 along with applications to the number field sieve. In this
edition, the applications are put into a separate Chapter 4 including the number field sieve in
§4.5, introduced via §4.4 on factoring, including Pollard’s cubic factoring algorithm, which is
more comprehensive than that of the first edition. In turn, §4.1-§4.3 are applications leading
to the latter that involve solutions of Diophantine equations including Bachet, Fermat, and
prime power representation. This includes Kummer’s proof of Fermat’s Last Theorem (FLT)
for regular primes, Case I, which was put into Chapter 3 in the first edition. This edition
maintains the inclusion of Bernoulli numbers, the Riemann zeta function, and connections
via von Staudt-Clausen to the infinitude of irregular primes. Applications also appear at
the end of Chapter 5 with an overview of primality testing and, as an application of the
Kronecker—Weber Theorem, Lenstra’s primality test employing the Artin symbol. A special
case of this test is presented as the Lucas-Lehmer test for Mersenne primes.

Chapter 5 replaces Chapter 4 of the first edition in its discussion of ideal decomposition in
number fields but spreads out the number of sections to more evenly present the material.
One feature of the second edition that distinguishes it from the first is that there is much
less emphasis on using exercises with the framework of proofs in the main text. Exercises
are referenced in the proofs only when they represent material that is routine and more
appropriate for a student to do. Throughout the text, this is one of the major changes. In
particular, in the proof of the Kronecker-Weber Theorem, as well as in the proofs of the
reciprocity laws in Chapter 6, what were exercises in the first edition are now explained in
full in the main text. Moreover, exercises in this edition are designed to test and challenge
the reader, as well as illustrate concepts both within the main text as well as extend those
ideas. For instance, in the exercises for §2.1, Galois theory is expanded from the number
field case to finite fields and general fields of characteristic zero which is then invoked in
§5.4 to discuss residue class fields and connections with the Frobenius automorphism. Thus,
the reader is led at a measured pace through the material to a clear understanding of the
pinnacles of algebraic number theory. What is not included from the first edition is any
separate discussion of elliptic curves. This is done to make the text more self-contained
as a one-semester course for which the addition of the latter is better placed in a related
course such as given in [54]. Also, the numbering system has changed from the first edition
consecutive numbering of all objects to the standard method in this edition.
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@ Features of This Text

e The book is ideal for the student since it is ezercise-rich with over 310 problems. The
more challenging exercises are marked with the symbol ¥¢. Also, complete and detailed
solutions to all of the odd-numbered exercises are given in the back of the text. Throughout
the text, the reader is encouraged to solve exercises related to the topics at hand. Complete
and detailed solutions of the even-numbered ezercises are included in a Solutions Manual,
which is available from the publisher for the qualified instructor.

e The text is accessible to anyone, from the senior undergraduate to the research scientist.
The main prerequisites are the basics of a first course in abstract algebra, the fundamentals
of an introductory course in elementary number theory, and some knowledge of basic matrix
theory. In any case, the appendices, as described below, contain a review of all of the
requisite background material. Essentially, the mature student, with a knowledge of algebra,
can work through the book without any serious impediment or need to consult another text.

e There are more than forty mini-biographies of those who helped develop algebraic number
theory from its inception. These are given, unlike the footnote approach of the first edition,
in boxed highlighted text throughout, to give a human face to the mathematics being
presented, and set so they do not interfere with the flow of the discourse. Thus, the reader
has immediate information at will, or may treat them as digressions, and access them later
without significantly interfering with the main mathematical text at hand. Our appreciation
of mathematics is deepened by a knowledge of the lives of these individuals. I have avoided
the current convention of gathering notes at the end of each chapter, since the immediacy
of information is more important.

e There are applications via factoring, primality testing, and solving Diophantine equations
as described above. In §4.5, we also discuss the applications to cryptography.

e The appendices are given, for the convenience of the reader, to make the text self-
contained. Appendix A is a meant as a convenient fingertip reference for abstract algebra
with an overview of all the concepts used in the main text. Appendix B is an overview
of sequences and series, including all that is required to develop the concepts. Appendix
C consists of the Greek alphabet with English transliteration. Students and research math-
ematicians alike have need of the latter in symbolic presentations of mathematical ideas.
Thus, it is valuable to have a table of the symbols, and their English equivalents readily
at hand. Appendix D has a table of numerous Latin phrases and their English equivalents,
again important since many Latin phrases are used in mathematics, and historically much
mathematics was written in Latin such as Bachet’s Latin translation of Diophantus’ Greek
book Arithmetica.

e The list of symbols is designed so that the reader may determine, at a glance, on which
page the first defining occurrence of a desired notation exists.

e The indezx has over two thousand entries, and has been devised in such a way to ensure
that there is maximum ease in getting information from the text. There is maximum cross-
referencing to ensure that the reader will find ease-of-use in extracting information to be
paramount.

e The bibliography has over seventy entries for the reader to explore concepts not covered in
the text or to expand knowledge of those covered. This includes a page reference for each
and every citing of a given item, so that no guesswork is involved as to where the reference
is used.

e The Web page cited in the penultimate line will contain a file for comments, and any
typos/errors that are found. Furthermore, comments via the e-mail address on the bottom
line are also welcome.
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Suggested Course Outlines

A glance at the Table of Contents will reveal that there is a wealth of material beyond
a basic course in algebraic number theory. This section is intended for the instructor, by
giving several routes from a course in the basics of algebraic number theory to a more
advanced course with numerous applications, as well as other aspects such as Kummer’s
proof of FLT for regular primes, and advanced reciprocity laws.

Chapters 1 through 3 are essential as a foundation, whereas Chapter 4 is optional, and the
instructor may skip it or add any section as an application of the material in the previous
chapters. §4.4-§4.5 go together as advanced material on factoring, with §4.4 preparatory
material using Pollard’s algorithm to set the stage for the description of the number field
sieve in §4.5.

In §5.1-85.4, the groundwork is laid for ramification theory. However, in §5.5, the theory of
Kummer extensions and applications to Kummer’s proof of FLT for regular primes in the
second case may be eliminated from a basic course in algebraic number theory. §5.6 on the
proof of the Kronecker—Weber theorem, is a significant application of what has gone before,
but is again not necessary for a basic course. §5.7 is an applications section on primality
testing.

In a bare-bones course, one does not need to proceed into Chapter 6. However, the chap-
ter illustrates some of the pinnacles of algebraic number theory with proofs of the cubic,
biquadratic, and Eisenstein reciprocity laws, as well as development of the Stickelberger re-
lation. In a more advanced course, these topics should be included. The following diagram
is a schematic flow-chart to illustrate the possible routes for the course, from the most basic
course to one filled with applications.

Xv
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Chapter 1

Integral Domains, Ideals, and
Unique Factorization

Take care of your body with steadfast fidelity. The soul must see through these eyes
alone, and if they are dim, the whole world is clouded.

Johann Wolfgang von Goethe (1749-1832), German poet, novelist, and
dramatist

In this chapter, we introduce integral domains, and develop the concepts of divisibility,
irreducibility, and primes which we apply to Dedekind domains. This preamble allows us to
develop Noetherian, principal ideal, and unique factorization domains later in the chapter
thereby setting the foundation for the introduction of algebraic number rings and number
fields. The reader should be familiar with some basic abstract algebra, such as groups, rings,
and fields and their properties, which are reviewed in Appendix A, starting on page 319,
for convenience and finger-tip reference.

1.1 Integral Domains

In order to define concepts in the sequel, we will need the following.
Definition 1.1 — Units

An element « in a commutative ring R with identity 1y is called a unit in R when there is
a 3 € R such that a8 = 1. The multiplicative group of units in R is denoted by Uz—see
Exercise 1.7 on page 6.
Example 1.1 In Z[\/ﬁ] =R, 1+ V2 is a unit, since

(1+V2)(-1+V2)=1g =1

For the following, recall that a zero divisor in a commutative ring R is a nonzero element
a € R such that a8 = 0 where 3 # 0.

Definition 1.2 — Integral Domains

An integral domain is a commutative ring D with identity 1p, having no zero divisors. In
particular, if every nonzero element is a unit, then D is a field.

1



2 1. Integral Domains, Ideals, and Unique Factorization

Application 1.1 — The Cancellation Law

One of the most important properties of an integral domain D is that the cancellation law
holds, namely if «, f € D with o nonzero and a8 = avy, then § = +.

Example 1.2 The ordinary or rational integers

Z={...,-2-1,01,2,...}

provide us with our first example of an integral domain.

Example 1.3 For any nonsquare integer n,
Zlyn)={a+b/D:a,beZ}

is an example of an integral domain. For example, if n = —1, we have the Gaussian
integers. Indeed, n = —1 yields v/—1 =i which is an example of a special kind of unit, the
generalization of which we now define.

Definition 1.3 — Primitive Roots of Unity

For m € N = {1,2,3,...} the natural numbers (,, denotes a primitive m*™ root of unity,
which is a root of ™ — 1, but not a root of 2% — 1 for any natural number d < m.

Example 1.4 With reference to Example 1.3, where n = —1, V=1 =i = (4 is a primitive
fourth root of unity, since it is a root of 2* — 1, but not root of 27 — 1 for j = 1,2,3. Also,

G=(-1+v-3)/2
is a primitive cube root of unity, since it is a root of 2 — 1, but clearly not a root of 2% — 1

orz— 1.

Example 1.5 Suppose that p is a prime and ¢, is a primitive p-th root of unity. If we set

p—1
2=3¢
j=0
then
p—1 p—1
x(p=zci7+1 :ZC;::E' (1.1)
j=0 j=0
Thus, if 2 # 0, dividing through (1.1) by z gives ¢, = 1, a contradiction. Thus,
1+G+G+--+¢¢ ' =0.
This fact will prove useful when discussing notions surrounding roots of unity later in

the text—see Exercise 2.25 on page 69, for instance. Also, we generalize this example in
Exercise 6.28 on page 310.
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Example 1.3 is a motivator for the more general concept, which later turns out to be the
so-called “ring of integers of a quadratic field”—see Theorem 1.28 on page 45.

Application 1.2 — Quadratic Domains and Norms

If n is a nonsquare integer, then Z[y/n] is an integral domain as given in Example 1.3, where
we note that Z[y/n] is a subset of the field Q(y/n). We call domains in Q(\/n) quadratic
domains. There is a slightly larger subset of Q(y/n) that is also an integral domain when
n = 1(mod 4)—see Exercise 1.1 on page 6

z [1 “;‘ﬂ C Q(v/n).

Now we may combine Example 1.3 with this application to describe some special quadratic
domains as follows. Define

Zlwy,] = {a + bwy : a,b € Z},

where

Vn if n # 1(mod 4).
Then Z|w,] is a quadratic domain.

Another concept we will see in greater generality later, but applied here to quadratic do-
mains, is the quadratic norm N : Q(y/n) — Q via

N(a+ by/n) = (a4 by/n)(a — by/n) = a®> —nb* € Q.

In particular, by Exercise 1.3

y :{ (1+vm)/2 ifn=1(mod 4),

a € Uz, if and only if N(a) = £1.

We will be using the concept of a norm throughout our discussion to establish properties
of, in this case, quadratic domains, or in general, rings of integers, that we have yet to
define—see Definition 1.30 on page 36.

The notion of divisibility of elements in an integral domain is a fundamental starting point
for understanding how algebraic number theory generalizes the notions of “divisibility,”

“primality,” and related concepts from the integers Z to other integral domains such as
Z|wn).

Definition 1.4 — Divisors and Trivial Factorizations

If o, B € D an integral domain, then « is said to be a divisor of 3, if there exists an element
~ € D such that = ay, denoted by « l B. If a does not divide 3, then we denote this by
atB. If B = ary, where either « € ip or v € Up, then this is called a trivial factorization

of .

Example 1.6 Consider the notion of units given in Definition 1.1 on page 1 and the
illustration given in Example 1.1. Then we have that both (1 + v/2) | 1 and (=14 v/2) | 1.
Indeed, this may be said to characterize units in D, namely

« 1s a unit in an integral domain D if and only if o | 1.

This may be used as an alternative to that of Definition 1.1. The following notion allows
for the introduction of a different approach.
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Definition 1.5 — Associates

If D is an integral domain and «, 8 € D with « | [ and S | a, then a and /3 are said to be
associates, and we denote this by a ~ 3. If a and [ are not associates, we denote this by

a o B.

Example 1.7 From Definition 1.5 and Example 1.6, we see that « is a unit in an integral
domain D if and only if a ~ 1. Furthermore, if « ~ 3 for any «, 8 € D, then there is a unit
u € D such that o = uf. To see this, since « | B, then there is a v € D such that 8 = vya.
Conversely since 3 | «, there is a § € D such that a = §3. Hence, o = §3 = dva, so by the
cancellation law exhibited in Application 1.1 on page 2, 1 = §v, s0 6 = vy~ ! = u is a unit
and a = uf.

Example 1.8 In Z[/10], 2 + V10 ~ 16 + 5v/10 since

16 4+ 5v10 = (2 + V10)(3 + v/10),
so (24 v/10) | (16 + 5v/10), and

2 + /10 = (16 + 5v/10)(—3 + V10)
so (16 + 5v/10) | (2 + V10).

Example 1.9 Since
6 = (4 +V10)(4 — V10),

then (4 + v/10) | 6 in Z[V10).

Notice that 6 = 2 - 3 so it appears that 6 does not have a “uniqueness of factorization”
in Z[v/10] in some sense that we now must make clear and rigorous. Now we develop the
notions to describe this phenomenon which is distinct from Z where 6 does have unique
factorization via the Fundamental Theorem of Arithmetic. In fact, in Z, a prime, is defined
to be an integer p such that the only divisors are +1 and +p. Thus, primes satisfy that

if p | ab, then either p | aorp | b (1.2)
—see [53, Lemma 1.2, p. 32]. Also, primes in Z satisfy that
if p = ab, then a = +1 or b = +1. (1.3)

The following generalizes property (1.3) to arbitrary integral domains. Then we will discuss
property (1.2) and show how (1.2)-(1.3) generalize to similar notions in general integral
domains.

Definition 1.6 — Irreducibles

If D is an integral domain and a nonzero, nonunit element 3 € D satisfies the property that
whenever 3 = a7, then either a € {p or v € Up, then [ is said to be irreducible. In other
words, the irreducible elements of D are the nonzero, nonunit elements having only trivial
factorizations. If a nonzero, nonunit element of D is not irreducible, it is called a reducible
element.



