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Preface

In the past decade there has been a surge of interest in algebraic approaches to
optimization problems defined in terms of multivariate polynomials. Fundamental
mathematical challenges that arise in this program include understanding the struc-
ture of nonnegative polynomials, the interplay between efficiency and complexity
of different representations of algebraic sets, and the development of effective algo-
rithms. Remarkably, and perhaps unexpectedly, convexity provides a new viewpoint
and a powerful framework for addressing these questions. This naturally brings us
to the intersection of algebraic geometry, optimization, and convexr geometry, with
an emphasis on algorithms and computation. This emerging area has become known
as convex algebraic geometry.

Our aim is to provide an accessible and unifying introduction to the many
facets of this fast-growing interdisciplinary area. Each chapter addresses a fun-
damental aspect of convex algebraic geometry, ranging from the well-established
core mathematical theory to the forefront of current research and open questions.
Throughout we showcase the rich interactions between theory and applications.

This book is suitable as a textbook in a graduate course in mathematics and
engineering. The chapters make connections to several areas of pure and applied
mathematics and contain exercises at many levels, providing multiple entry points
for readers with varied backgrounds.

We thank the National Science Foundation for funding a Focused Research
Group grant (2008-2011) awarded to Bill Helton, Jiawang Nie, Pablo A. Parrilo,
Bernd Sturmfels, and Rekha R. Thomas. This award enabled a flurry of research
activity in semidefinite optimization and convex algebraic geometry. Several work-
shops and conferences were organized under this grant’s support. In particular this
book was inspired by the lectures at the workshop LMIPO organized by Bill Helton
and Jiawang Nie at the University of California, San Diego in March 2010.

We thank all our contributors for their hard work and perseverance through
multiple rounds of edits. We also thank Tom Liebling, Sara Murphy, and Ann
Manning Allen at SIAM for their support and patience with the production of this
book. Special thanks to our students and colleagues who read versions of this book
and sent us comments, in particular Chris Aholt, Hamza Fawzi, Fabiana Ferracina,
Alexander Fuchs, Chris Jordan-Squire, Frank Permenter, James Pfeiffer, Stefan

Xv
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