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PREFACE

In this volume five review articles are presented dealing with topics of current
research interests in optics.

The first article, by Yu.A. Kravtsov, G.W. Forbes and A.A. Asatryan, is
concerned with the analytic extension of the concept of geometrical optics rays
into the complex domain. The extension is intimately related to inhomogeneous
(evanescent) waves, which are currently of particular interest in connection with
the rapidly developing area of near-field optics. The results are also relevant to
investigations of wave attenuation in absorbing media, and to the understanding
of light penetration into geometrical shadow regions, excitation of surface
waves and propagation of Gaussian beams. The article presents the principles,
with special emphasis on the physical significance of complex rays and their
applications.

The second article, by D.-G. Welsch, W. Vogel and T. Opatrny, describes
recent progress in the general area of quantum-state reconstruction, particularly
for extracting information about the quantum state of a given object from a set
of measurements. The methods are applicable to the optical field as well as to
various matter waves. Some methods of processing the measured data and many
of the important experiments in this area are discussed.

The next article, by S.K. Sharma and D.J. Somerford, is concerned with the
scattering of light in the eikonal approximation. This approximation originated in
the theory of high-energy scattering processes and in the broad area of potential
scattering. From the well-known analogy between a scattering potential and the
distribution of the refractive index, the eikonal approximation was later adapted
to the analysis of light scattering by small particles. In this article an account
is given of the eikonal approximation in the context of optical scattering, and
its domain of validity is discussed. The relationship of this approximation to
other approximate techniques as well as some of its possible applications are
considered.

The fourth article, by L. Allen, M.J. Padgett and M. Babiker, concerns the
orbital angular momentum of light. The orbital angular momentum is shown
to be an observable quantity which can be profitably used with certain types
of light beams. The phenomenological interaction of the beams with matter in
bulk is reviewed and the contributions of the orbital angular momentum to the
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dissipative and dipole forces on atoms are calculated in detail. Orbital and spin
angular momentum of light are compared and contrasted.

The concluding article, by A. Sizmann and G. Leuchs, presents a review of the
experimental progress made in recent years in the generation of squeezed light
and in quantum nondemolition measurements in optical fibers. The rich nonlinear
dynamics of quantum solitons in fibers has led to the discovery of new quantum
optical effects, such as intrapulse quantum correlations. The nonlinearity of
optical fibers is now used to build passive fiber devices which provide all-optical
functions, such as quantum noise reduction, and it is expected that active devices
will allow absorption-free measurements of optical signals. The review is also
concerned with these and other promising developments in this general area.

Emil Wolf
Department of Physics and Astronomy
University of Rochester

Rochester, New York 14627, USA

December 1998
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§ 1. Introduction
1.1. PIONEERING WORKS

Complex rays are solutions of the ray equations of traditional geometrical
optics, but correspond to extremals in the six-dimensional complex space
', x",y',y",2',z"), where x’ = Re{x}, x” = Im{x}, etc. These trajectories
can be used to derive both the phase and amplitude of the associated wavefield.
Complex rays were first considered during the 1930s and 1940s in the theory of
radio wave propagation through the lossy ionosphere (Epstein [1930a,b], Booker
[1939], Bremmer [1949]), but a more general formalization was not developed
until the late 1950s and early 1960s. The decisive step in understanding the
analytical nature of complex rays was made by Keller [1958], who introduced
the notion of complex rays to treat the area of a caustic shadow. He studied the
equations for rays passing through points in the interior of a circular caustic in
two dimensions and showed that such rays contact the caustic surface at complex
points that lie on its analytic continuation.

A vyear later, Seckler and Keller [1959] studied complex rays in plane-layered
media, and Keller and Karal [1960] applied complex rays to the problem
of surface wave excitation. Grimshaw [1968] studied these surface waves in
more detail for particular surfaces (the sphere, the cone, and the plane with
inhomogeneous impedance). Babich [1961] considered the analytic continuation
of the wave function into the caustic shadow, and performed calculations that
may be interpreted in terms of complex rays. A similar analytic continuation
was also applied by Keller and Rubinow [1960] who studied eigenfunctions in
both open and closed optical resonators. Complex trajectories are the quantum-
mechanical analog of complex rays, and were studied by Maslov [1963] in
connection with the quasiclassical asymptotics of solutions to the Schrédinger
equation. Complex trajectories appeared there as complex solutions of the
classical equations of motion in regions that are inaccessible to classical particles
(i.e., areas of tunneling). Maslov [1964] also pointed out that complex rays may
form foci and caustics.

The application of complex rays within the theory of radio wave propagation
through the lossy ionosphere was resumed by Budden [1961], Sayasov [1962],
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Budden and Jull [1964], and Jones [1968, 1970]. Generally speaking, in lossy
media all rays become complex because the index of refraction, which enters
both the eikonal and ray equations, takes complex values. The growing interest
in these ideas led to the first review paper on complex rays, written by Kravtsov
[1967a], in which the analytic nature of complex trajectories was refined and
the notion of a complex focus introduced for a Gaussian beam. The idea of
using a complex point source to model a Gaussian beam was considered almost
simultaneously by Deschamps [1967, 1968, 1971], Arnaud [1968, 1969b], and
Keller and Streifer [1971].

Of note also, in one-dimensional problems the method of phase integrals (see,
e.g., Heading [1962]) can be regarded as a precursor to complex geometrical
optics; that is, complex ray methods may be viewed as a generalization of the
phase integral method for three-dimensional inhomogeneous media. Similarly,
the old idea of a complex angle of refraction for the evanescent component in
the case of total internal reflection is a clear ancestor of complex geometrical
optics. Thus this field has a long history.

1.2. CHARACTER OF WAVEFIELDS DESCRIBED BY COMPLEX GEOMETRICAL OPTICS

In complex geometrical optics the direction of wave propagation is given by the
gradient of the real part of the complex phase, and the direction of exponential
decay of the field’s magnitude is principally determined by the gradient of the
imaginary part. In nonabsorbing media these directions are orthogonal, but in
lossy media they are separated by an acute angle. In both cases inhomogeneous
waves can enter, and their magnitude changes exponentially on a phase front.
In fact, just as homogeneous (propagating) waves are the subject of traditional
geometrical optics, inhomogeneous (or evanescent) waves can be regarded as the
principal subject of complex geometrical optics (Kravtsov [1967a,b], Choudhary
and Felsen [1973], Felsen [1976a]).

Like traditional geometrical optics, complex geometrical optics can involve
a multiplicity of rays, so that the total wavefield is then a sum of the waves
associated with each ray. As emphasized by Kravtsov [1967a,b], when multiple
complex rays are present, selection rules are typically required to exclude
nonphysical solutions. Another feature of complex rays is that, unlike real rays,
they can describe nonlocal (diffraction-like) processes. A clear demonstration of
their nonlocal properties is provided by the example of Gaussian beams, see § 5.
It is shown in that section that complex geometrical optics provides a complete
description of a Gaussian beam (Kravtsov [1967a,b], Keller and Streifer [1971]).



