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Preface

Driven by the ever-growing demand for versatile electronics with
increased functionality, high performance, light weight, low cost and
improved design options, conductive filler/polymer composites (CPCs)
have emerged as a distinctive solution. Manipulating the conductive
network formation in CPCs allows them to be employed in a wide range of
applications, such as charge storage, electrostatic discharge dissipation and

electromagnetic interference (EMI) shielding.

In this dissertation, controlling the conductive network formation was
the key aspect in designing the morphology of CPCs for electrical
applications. Multi-walled carbon nanotube (MWCNT) was chosen as
conductive filler due to its surprising electronic structure and growing
industrial usage. We employed two distinct techniques to improve or
deteriorate conductive network formation to improve the electrical
properties in MWCNT/polymer composites, i.e. electrical conductivity,
EMI shielding and dielectric properties. These techniques comprise (1)
aligning MWCNTs using an injection molding machine, and (2) replacing
MWCNTs with copper nanowires (CuNWs).

Prior to exploring the influence of the above-mentioned techniques on
the electrical properties of CPCs, a series of studies were implemented on
MWCNT/polymer composites to obtain a general understanding from the
electrical behaviors of CPCs as a function of MWCNT content. The results
over the X-band (8.2 — 12.4 GHz) showed that the electrical conductivity,
EMI shielding and dielectric properties rose with MWCNT content. The
increase in electrical conductivity with MWCNT loading was attributed to
the formation of conductive paths across the composite. Increase in EMI

shielding with MWCNT content was related to a greater number of
vi



interacting nomadic charges and also higher real permittivity (polarization
loss) and imaginary permittivity (Ohmic loss). Moreover, the broadband
dielectric spectroscopy (107" — 10"® Hz) showed that both real permittivity
and imaginary permittivity increased drastically as the MWOCNT
concentration approached the percolation threshold. Increase in real
permittivity was related to the formation of a large number of
nanocapacitor structures, MWCNTs as electrodes and polymer matrix as
dielectric material, and increase in imaginary permittivity was ascribed to
greater number of dissipating charges, enhanced conductive network
formation and boosted polarization loss arising from interfacial

polarization.

MWCNT alignment, induced by an injection molding machine, was
observed to deteriorate the conductive network formation. As inferior
conductive network formation reduces imaginary permittivity, this
technique was introduced as an innovative technique to improve the
dielectric properties of MWOCNT/polymer composites. Nonetheless,
MWCNT alignment indicated an adverse influence on the percolation
threshold, electrical conductivity and EMI shielding due to its negative
influence on conductive network formation. In brief, unavoidable flow-
induced alignment of MWCNTSs in injection molding process was
presented as an opportunity to improve the dielectric properties for charge

storage or as a challenge to be avoided for producing conductive CPCs.

CuNWs were creatively displayed to be competent substitutions for
MWCNTs for charge storage applications. Unavoidable oxide layer
formation on the surface of CuNWs, which has always been a disadvantage
for electronics applications, was employed as a benefit to decay the

conductive network formation and reduce the imaginary permittivity.
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Moreover, higher conductivity of fresh core of CuNWs relative to
MWCNTs provided the composites with more free charges contributing to
real permittivity. In conclusion, high conductivity of fresh core of CuNWs
combined with the presence of the oxide layer on CuNW surfaces depict a
promising future for CuNW/polymer composites as charge storage
materials.

Mohammad Arjmand

University of Calgary
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Light microscopy

Methanol

Minute

Material under test
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Maxwell-Wagner-Sillars
Near-infrared
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PNA
PPG
PVDF
PS

RC

SiP

SE

SEM
SWCNT
TEM
VGCNF
VNA
WAXD
3-D

Symbols

dB

e

Printed circuit board
Programmable network analyzer
Polymer Processing Group
Poly(vinylidene fluoride)
Polystyrene
Resistance/capacitance
System-in-package

Shielding effectiveness
Scanning electron microscopy
Single-walled carbon nanotube
Transmission electron microscopy
Vapor grown carbon nanofiber
Vector network analyzer

Wide angle x-ray diffraction

Three dimensional

Area of sample

Electric or magnetic field strength unit vector
Capacitance of free space

Mold temperature

Melt temperature

Injection/holding pressure

Injection velocity

Thickness of sample

Decibel (unit of shielding effectiveness)

Charge of an electron
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SE/(
SE,
SEyp

Electric field

Incident electric field
Transmitted electric field
Electromagnetic wave frequency
Magnetic field

Incident magnetic field
Transmitted magnetic field
Electric current

Resistive current

Capacitive current

Current density

Ratio of conducting aggregate to average gap
width

Number of electrons

Power density

Incident power

Transmitted power

Stored charge

Charge of particle

Resistance

Contact resistance

Resistance of cable

Resistance of sample

Siemens (unit of electrical conductivity)
Overall shielding effectiveness
Shielding by reflection
Shielding by absorption
Shielding by multiple-reflection
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tano

Greek Letters

i)
))
o)

Ratio of reflected power to incident power in
port 1

Ratio of transmitted power from port 1 to port 2
to incident power in port |

Ratio of transmitted power from port 2 to port 1
to incident power in port |

Ratio of reflected power to incident power in
port 2

Critical exponent of percolation threshold
Torque

Dissipation factor

Voltage

Watt (Unit of power)

Percolation threshold

Real impedance

Imaginary impedance

Attenuation constant

Phase constant

Propagation constant

Skin depth

Dielectric (real) permittivity

Dielectric loss (Imaginary permittivity)
Dielectric permittivity of free space

Relative dielectric permittivity
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Ho
Hr
Po
Ps

w

Intrinsic Impedance of shielding materials
Intrinsic impedance EM wave in free space
Magnetic permeability

Magnetic permeability of free space
Relative magnetic permeability

Volume resistivity of conductive filler
Surface resistivity

Volume resistivity

Electrical conductivity

Electrical conductivity of copper

Relative electrical conductivity

Time constant
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Angular frequency
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