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THE MOLECULAR CHALLENGE

Sir Ethylene, to scientists fair prey,

(Who dig and delve and peek and push and pry,
And prove their findings with equations sly)
Smoothed out his ruffied orbitals, to say:

**I stand in symmetry. Mine is a way

Of mystery and magic. Ancient, |

Am also deemed immortal. Should I die,

Pi1 would be in the sky, and Judgement Day
Would be upon us. For all things must fail,
That hold our universe together, when

Bonds such as bind me fail, and fall asunder.
Hence, stand I firm against the endless hail

Of scientific blows. 1 yield not.”” Men

And their computers stand and stare and wonder.

wW. G. LOWE



PREFACE

My aim in this book is to present a reasonably rigorous treatment of
molecular orbital theory, embracing subjects that are of practical interest to
organic and inorganic as well as physical chemists. My approach here has
been to rely on ph¥sical intuition as much as possible, first solving a number
of specific problems in order to develop sufficient insight and familiarity to
make the formal treatment of Chapter 6 more palatable. My own experience
suggests that most chemists find this route the most natural.

I have assumed that the reader has at some time learned calculus and
elementary physics, but I have not assumed that this material is fresh in his
or her mind. Other mathematics is developed as it is needed. The book could
be used as a text for undergraduate or graduate students in a half or full year
course. The level of rigor of the book is somewhat adjustable. For example,
Chapters 3 and 4, on the harmonic oscillator and hydrogen atom, can be
truncated if one wishes to know the nature of the solutions, but not the
mathematical details of how they are produced.

| have made use of appendixes for certain of the more complicated
derivations or proofs. This is done in order to avoid having the development
of major ideas in the text interrupted or obscured. Certain of the appendixes
will interest only the more theoretically inclined student. Also, because |
anticipate that some readers may wish to skip certain chapters or parts of
chapters, | have occasionally repeated information so that a given chapter
will be less dependent on its predecessors. This may seem inelegant at times,
but most students will more readily forgive repetition of something they
already know than an overly terse presentation.

[ have avoided early usage of bra-ket notation. I believe that simultane-
ous introduction of new concepts and unfamiliar notation 1s poor pedagogy.
Bra-ket notation is used only after the ideas have had a chance to jell.

Problem solving is extremely important in acquiring an understanding of
quantum chemistry. I have included a fair number of problems with hints
for a few of them in Appendix 14 and answers for almost all of them in
Appendix 15. ‘

It is inevitable that one be selective in choosing topics for a book such as
this. This book emphasizes ground state MO theory of molecules more than

XV



X Vi PREFACE

do most introductory texts, with rather less emphasis on spectroscopy than
is usual. Angular momentum 1s treated at a fairly elementary level at vari-
ous appropriate places in the text, but 1t 1s never given a full-blown for-
mal development using operator commutation relations. Time-dependent
phenomena are not included. Thus, scattering theory is absent, although
selection rules and the transition dipole are discussed in the chapter on
time-independent perturbation theory. Valence-bond theory is completely
absent. If I have succeeded in my effort to provide a clear and meaningful
treatment of topics relevant to modern molecular orbital theory, it should
not be difficult for an instructor to provide for excursions into related topics
not covered 1n the text. |

Over the years, many colleagues have been kind enough to read sec-
tions of the evolving manuscript and provide corrections and advice. |
especially thank L. P. Gold and O. H. Crawford, who cheerfully bore the
brunt of this task. p

Finally, I would like to thank my father, Wesley G. Lowe, for allowing
me to include his sonnet, ‘‘The Molecular Challenge.™
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CHAPTER 1

CLASSICAL WAVES
AND THE TIME-INDEPENDENT
SCHRODINGER WAVE EQUATION

1-1 Introduction

The application of quantum-mechanical principles to chemical problems
has revolutionized the field of chemistry. Today our understanding of chemical
bonding, spectral phenomena, molecular reactivities, and various other funda-
mental chemical problems rests heavily on our knowledge of the detailed
béhavior of electrons in atoms and molecules. In this book we shall describe in
detail some of the basic principles, methods, and results of quantum chemistry
that lead to our understanding of electron behavior.

In the first few chapters we shall discuss some simple, but important,
particle systems. This will allow us to introduce many basic concepts and
definitions in a fairly physical way. Thus, some background will be prepared for
the more formal general development of Chapter 6. In this first chapter, we
review briefly some of the concepts of classical physics as well as some early
indications that classical physics is not sufficient to explain all phenomena.
(Those readers who are already familiar with the physics of classical waves and
with early atomic physics may prefer to jump ahead to Section 1-7.)

-1-2 Waves

A. ‘Traveling Waves

A very simple example of a traveling wave is provided by cracking a whip.
A pulse of energy is imparted to the whipcord by a single oscillation of the
“handle. This results in a wave which travels down the cord, transferring the
energy to the “popper” at the end of the whip. In Fig. I-1, an 1dealization of
the process is sketched. The shape of the disturbance in the whip 1s called the
wave profile and is usually symbolized ¢(x). The wave profile for the traveling
wave in Fig. 1-1 shows where the energy is located at a given instant. It also
contains the information needed to tcll how much energy 1s being transmitted,

1



L 1. CLASSICAL WAVES AND THE SCHRODINGER EQUATION

t=2t

FIG. I-1 Cracking the whip. As time passes, the disturbance moves from left to right
along the extended whip cord. Each segment of the cord oscillates up and down as the
disturbance passes by, ultimately returning to its equilibrium position.

because the height and shape of the wave reflect the vigor with which the handle
was oscillated.

The feature common to all traveling waves in classical physics is that
energy is transmitted through a medium. The medium itself undergoes no

permanent displacement; it merely undergoes local oscillations as the distur-
bance passes through.

One of the most important kinds of wave in physics is the harmonic wave,
for which the wave profile is a sinusoidal function. A harmonic wave, at a
particular instant in time, is sketched in Fig. 1-2. The maximum displacement
of the wave from the rest position i1s the amplitude of the wave, and the wave-
length A is the distance required to enclose one complete oscillation. Such a
wave would result from a harmonic! oscillation at one end of a taut string.
Analogous waves would be produced on the surface of a quiet pool by a vibra-
ting bob, or in air by a vibrating tuning fork.

v
A

FIG. I-2 A harmonic wave at a particular instant in time. A4 is the amplitude and A is
the wavelength.

At the instant depicted in Fig. 1-2, the profile is described by the function
Y(x) = A sin(Qmx/[A) (1-1)

1 A harmonic oscillation is one whose equation of motion has a sine or cosine depen-
dence on time.



1-2 WAVES 3

(¢ = 0 when x = 0, and the argument of the sine function goes from 0 to 2=,
encompassing one complete oscillation as x goes from 0 to A.) Let us suppose
that the situation in Fig. 1-2 pertains at the time 7z = 0, and let the velocity of
the disturbance through the medium be c¢. Then, after time ¢, the distance
traveled is ct, the profile is shifted to the right by ¢t and is now given by

¥(x, t) = A sin[27/A)(x — ct)] (1-2)

A capital ¥ is used to distinguish the time-dependent function (1-2) from the
time-indepehdent function (1-1).

The frequency v of a wave is the number of individual repeating wave units
passing a point per unit time. For our harmonic wave, this is the distance
traveled in unit time ¢ divided by the length of a wave unit A. Hence, |

v = ¢[A (1-3)
Note that the wave described by the formula
Y(x,t) = Asin[2n/A)(x — ct) + €] (1-4)

is similar to ¥ of Eq. (1-2) except for being displaced. If we compare the two
waves at the same instant in time, we find ¥’ to be shifted to the left of ¥ by
eA[2w. If € = =, 3m, ..., then V" is shifted by A/2, 3A/2, ... and the two functions
are said to be exactly out of phase. If e = 27, 4=, .. ., the shift is by A, 24, .. .,
and the two waves are exactly in phase. € is the phase factor for ¥’ relative to V.
Alternatively, we can compare the two waves at the same point in x, in which

case the phase factor causes the two waves to be displaced from each other in
time.

B. Standing Waves

In problems of physical interest, the medium is usually subject to con-
straints. For example, a string will have ends, and these may be clamped, as in
a violin, so that they cannot oscillate when the disturbance reaches them. Under
such circumstances, the energy pulse is unable to progress further. It cannot
be absorbed by the clamping mechanism if it is perfectly rigid, and it has na
choice but to travel back along the string in the opposite direction. The reflected
wave is now moving into the face of the primary wave, and the motion of the
string is in response to the demands placed on it by the two simultaneous waves:

‘F(x: f) = IF]'.)I‘Jllrzl:iﬂ.r:';‘!'(-xm t) + Treﬁect.ed(x: t) (1'5)

When the primary and reflected waves have the same amplitude and speed, we
can write

¥Y(x, t)

A sin[(27/A)(x — ct)] + A sin[27/A)(x + ct)]
2A sin(2mx/A) cos(2mct/A) (1-6)
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This formula describes a standing wave—a wave that does not appear to travel
through the medium, but appears to vibrate ““in place.”” The first part of the
function depends only on the x variable. Wherever the sine function vanishes,
Y will vanish, regardless of the value of ¢. This means that there are places
where the medium does not ever vibrate. Such places are called nodes. Between
the nodes, sin(27x/A) is finite. As time passes, the cosine function oscillates
between plus and minus unity. This means that ¥ oscillates between plus and
minus the value of sin(27x/A). We say that the x-dependent part of the function
gives the maximum displacement of the standing wave, and the t-dependent
part governs the motion of the medium back and forth between these extremes
of maximum displacement. A standing wave with a central node is shown in Fig.

1-3.

T

A
. 2ncf)

P - B

/ rofile when cos ( / 1
Ncde
0 I
0 L

™ Profile when cos (?E ”) + ] ™ 24 sin (QI—X)

FIG. I-3 A standing wave in a string clamped at v = 0 and x = L. The wavelength
A is equal to L.

Equation (1-6) 1s often written as

F(x, 1) = ¥(x) cos(wt) | (1-7)
where, |
ICU — 21’TC/:\ | (1-8)

The profile ¥(x) is often called the amplitude function and w is the frequency
factor.

Let us consider how the energy is stored in the vibrating string depicted 1n
Fig. 1-3. The string segments at the central node and at the clamped endpoints
of the string do not move. Hence, their kinetic energies are zero at all times.
Furthermore, since they are never displaced trom their equilibrium positions,
their potential energies are likewise always zero. Theretore, the total energy
stored at these segments 1s always zero as long as the string continues to vibrate
in the mode shown. The maximum kinetic and potential energies are asso-
ciated with those segments located at the wave peaks and valleys (called the
antinodes) because these segments have the greatest average velocity and
displacement from the equilibrium position. A more detailed mathematical
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treatment would show that the total energy of any string segment i1s propor-
tional to ¥(x)? (Problem 1-7).

1-3 The Classical Wave Equation

It is one thing to draw a picture of a wave and describe its properties,
and quite another to predict what sort of wave will result from disturbing a
particular system. To make such predictions, we must consider the physical
laws that the medium must obey. One condition is that the medium must
obey Newton's laws of motion. For example, any segment of string of mass
m subjected to a force F mpst undergo an acceleration of F/m in accord with
Newton’s second law. In this regard, wave motion is perfectly consistent
with ordinary particle motion. Another condition, however, peculiar to waves,
Is that each segment of the medium is “attached” to the neighboring segments
so that, as i1t 1s displaced, it drags along its neighbor, which in turn drags
along its neighbor, etc. This provides the mechanism whereby the disturbance 1s
propagated along the medium.?

Let us consider a string under a tensile force 7. When the string is dis-
placed from its equilibrium position, this tension 1s responsible for exerting a
restoring force. For example, observe the string segment associated with the
region x to x + dx in Fig. 1-4. Note that the tension exerted at either end
of this segment can be decomposed into components parallel and perpendicular
to the x axis. The parallel component tends to stretch the string (which, however,
we assume to be unstretchable), the perpendicular component acts to accelerate
the segment toward or away from the rest position. At the right end of the seg-
ment, the perpendicular component F divided by the horizontal component

r

Fix + dx)

W(x + dx, 1)

X + dx Rest position of string

FIG. 1-4 A segment of string under tension 7. The forces at each-end of the segment
are decomposed into forces perpendicular and parallel to x.

2 Fluids are of relatively low viscosity, so the tendency of one segment to drag along
its neighbor is weak. For this reason fluids are poor transmitters of transverse waves (waves
in which the medium oscillates in a direction perpendicular to the direction of propagation).
In compression waves, one segment displaces the next by pushing it. Here the requirement is
that the medium possess elasticity for compression. Solids and fluids often meet this require-
ment well enough to transmit compression waves. The ability of rigid solids to transmit both
wave types while fluids transmit only one type is the basis for using earthquake-induced
waves to determine how deep the solid part of the earth’s mantle extends.



