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Preface

'

This book is based on the lecture course I give in the graduate school
of the Tata Institute of Fundamental Research (TIFR), and is
intended to be an introductory text for theoretical physicists. The
reader is expected to be familiar with the standard techniques of
mathematical physics, Newtonian mechanics and the special theory
of relativity.

For many years since its inception, general relativity held the
reputation of being a difficult subject, somewhat aloof from the
rest of physics. Einstein himself was aware of this and it was his
ambition to extend the radical concepts underlying the formulation
of general relativity so as to include a unified description of the
whole of physics. This goal remains remote even today.

Nevertheless, thanks to the observational inputs from cosmology
and astrophysics, the gap between general relativity and the rest
of physics has narrowed considerably. The theory has found
applications to the large-scale structure of the universe and to the
interiors of highly dense stars and supermassive objects. It has
enriched physics with the concept of black holes. In these lectures
I have emphasized the physical aspects of this theory rather than its
mathematical ones, and the selection of the topics of the lectures
has been dictated by this motive.

Scientific enquiry proceeds on the premise that no theory is per-
fect. General relativity, with all its underlying beauty, is not an
exception to this rule. In the last three lectures in this book, I
have discussed some of the shortcomings of general relativity and
the attempts made by other theories to circumvent them. I have
also discussed briefly the problems of quantization and the remark-
able Hawking-effect that black holes radiate. In an introductory
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text of this kind such discussions have to be somewhat superficial.
They are meant to convey to the reader the present state of excite-
ment in these areas. A subject is exciting for research only when
it is incomplete and full of difficulties.

No apology is made for the absence of certain topics like differ-
ential forms, tetrads, the Petrov classification, the techmiques of
global differential geometry, etc. While not denying their impor-
tant role in the modern development of the subject, I strongly feel
that they will be better appreciated and understood in a text written
at a higher level than the present one.

In writing these notes I have preferred the lecture format because
of its informality. = The notional time of a lecture is assumed to
be sixty minutes, although it would be rather ambitious to cover
all the material of some of the longer lectures in that period. In
practice I find it useful to leave certain gaps for the students to fill
in. The problems given at the end of each lecture are also intended
to supplement or amplify the material in the text. An extensive
list of references given at the end of the book will be found useful
by those wanting to obtain further details relating to matters re-
ferred to in the text. It is interesting to note that over two-thirds
of the reference in this list relate to the work of the past two decades.

I was fortunate in having the benefit of advice from my father,
Professor V. V. Narlikar, who read the first draft of most of these
lecture notes. I thank Mr P. Joseph and Miss Margaret Abnes for
typing the manuscript promptly. It is a pleasure to acknowledge
the assistance that Mr Palekar and the staff of the TIFR drawing
office provided for the illustrations in this book.

Bombay JAYANT V. NARLIKAR
March 1978
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LECTURE1

Theories of Gravitation

Of all the basic intersections of physics, gravitation is the oldest
known. In the late seventeenth century Isaac Newton formulated
the law of gravitation. In his famous book Principia (1687),
Newton'* discussed the laws of motion as well as of gravitation.
With the help of these laws he was not only able to describe the
behaviour of the falling apple—the phenomenon which is supposed
to have inspired him to think about a law of gravitation—but also
such diverse phenomena as the motion of projectiles on the Earth,
the movement of planets round the Sun, the motion of the Moon
round the Earth, and so on. The phenomenon of tides is also
explained by the Newtonian law of gravitation. It was the implicit
faith in this law that led Adams (1846) and LeVerrier (1846) to the
discovery of the planet Neptune. Even today, this law forms the
basis of the calculations of flight trajectories of spacecraft and
satellites sent out from the Earth.

Yet, in spite of the all-embracing character of Newtonian gravi-
tation and its string of successes, this law is considered unsatisfactory
in the framework of modern theoretical physics. Why? It is
necessary to answer this question before discussing more sophisticat-
ed theories of gravitation. Having answered this question we will
then try to answer the more difficult question: what are the
desirable features of a modern gravitation theory ?

*The references are listed at the end of the book.
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1.1 The Conflict between Newtonian Gravitation
and Special Relativity

In 1905 Einstein? put forward the special theory of relativity.
This theory revolutionized the concepts of space, time and motion
on which the Newtonian laws were founded. The conflict between
special relativity and Newtonian gravitation shows up in several
different ways.

In Newtonian physics the three-dimensional space and the one
dimensional time were kept apart. Using the Cartesian coordinates
(x, », z) to specify a point in space and ¢ as the Newtonian time, the
laws of Newtonian physics were covariant under the three-dimen-
sional orthogonal group of transformations of space coordinates
which preserve

rP=(x24y*+2%), (1.1)
apart from the group of Galilean transformations in space and
time. Thus, the force of gravitational attraction between two
masses 71y, m, separated by a distance r,

m{m
1 2r

F=—G (1.2)

r3

is covariant under this orthogonal group. The same applies to the
Poisson equation analogue of Eq. (1.2):

@ - Qﬁb + 0% = V2% = —4nGp (1.3)
ox* oyt o2
where ¢ is the gravitational potential of a distribution of matter with
density p. In Eqgs. (1.2) and (1.3), G is the constant of gravitation.
In special relativity, the orthogonal group above is replaced by
the Lorentz group in three space plus one time dimensions. This
preserves

szzcztz—f—yz—zz, ) , (1.4)

where ¢ is the speed of light. The Galilean transformations are
replaced by the Lorentz transformations.

Neither Eq. (1.2) nor Eq. (1.3) are invariant under the Lorentz
group. Physically this means that the speed of light has no
invariant status in the Newtonian scheme. Indeed, the invariance
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of Eq. (1.1) and ¢ separately in the Newtonian picture implies that
there the gravitational influence propagates with infinite speed.

Faced with this conflict there is an apparent choice between two
possible ways out. The first one is to retain the Newtonian frame-
work and to argue against the special theory of relativity. This
would also involve a modification of Maxwell’s electromagnetic
theory which is also Lorentz-covariant. The second approach is
to abandon or modify Newtonian gravitation to make it compatible
with the special theory of relativity.

The first alternative is ruled out by experiments. Motion of
rapidly moving elementary particles shows that physical interactions,
such as the electromagnetic interaction, are invariant under the
Lorentz transformation, and not the Galilean transformation.
Attempts to modify Maxwell’s equations to make them invariant
under Galilean transformations have not been successful.

The second alternative, although a more feasible one at first sight,
is also not very productive. Thereasons are as follows. A straight-
forward generalization of Eq. (1.3) to

10—y — g = 4rGp (L5)
cor?
does imply the propagation of the gravitational disturbance with
the speed of light. However, it raises other questions. If ¢ is a
scalar field, then p must also be scalar. On the other hand, the
equivalence of matter and radiation under the special relativistis
relation

E—=mc? (1.6)

requires us to recognize that any energy density along with the mass
density should act as a source of gravitational potential. This
means we should look upon p not as a scalar but as the tims-time
component of the second rank energy momentum tensor. This
means ¢ itself is not a scalar but a component of a second rank
tensor. Thus, Eq. (1.5) will have to be modified to

’jd’ik :4“77'GTik- (6)

What interpretation may be given to the tensor ¢,, ? Already we
are departing from the simple structure of Newtonian gravitation.

A second related difficulty of Eq. (1.5) is that it still does not
answer the important question: how is light affected by gravitation ?
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One may try to answer this by postulating that a photon of frequ-
ency » has a gravitational mass hv/c2 where 4 is the Planck’s constant.
Such a solution has a somewhat ad hoc character.

A third difficulty is of a more serious nature, in that it shows up
the incompatibility of the gravitational phenomenon with the
concept of the inertial frame which is so basic to special relativity
itself. Ideally an inertial frame is specified as one in which a particle
with no force on it appears to move with a uniform velocity in a
straight line. In practice how can we achieve the state of no force?
It is possible to shield a piece of matter from other interactions but
not from gravitation. The universality of gravitation means that
any shielding mechanism must involve matter (and energy) and
hence it must attract. The only way to visualize an inertial frame
is to imagine it far away from any gravitating matter. A concept
like this is clearly of no use to someone performing experiments on
this Earth or to an astronomer whose observations relate to distant
but massive gravitating objects.

1.2 The General Theory of Relativity

In formulating the general theory of relativity as a theory of
gravitation, Einstein was aware of these points of conflict. In order
to get round the last point, which seemed to demand a reexamination
of the basic concepts of special relativity itself, he proposed a very
bold and radical solution. This was based on the following type
of reasoning. If gravitation has something of a permanent character,
i.e., if it is an interaction which cannot be turned on and off at will,
then it must be intrinsic to the region where it is located. Einstein
identified this intrinsic property of a space-time region with its
geometry.

To understand the nature of the identification

Gravitation = Space-Time Geometry (1.8)

we go back to the last point of Section 1.1. There the practica
definition of the concept of inertial frames forces us to go far away
from any gravitating matter. It is only in such a region of space-
time that may we expect the special theory of relativity to apply
accurately. As implied by Eq. (1.4) the geometry of space-time is
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pseudo-Euclidean* in special relativity. In the presence of gravitat-
ing matter the correct description of space-time geometry, according
to Einstein, should be non-Euclidean. And, he sought to relate the
intrinsic parameters of a non-Euclidean space-time geometry to
the distribution of gravitating matter and energy. Thus, in the
presence of such a source of gravitation the gravitational effects will
not be described through an explicit external force but through the
non-Euclidean nature of the space-time geometry.

It is best to illustrate this with an example. Suppose a projectile

Fig. 1. The trajectory of a freely moving particle is shown by a dotted
straight line. A particle moving under the Earth’s gravity has the parabolic
trajectory shown by the continuous line. In Newtonian gra_vnatgoy, it is the
Earth’s gravitational force which bends the trajectory. In Einstein’s view the
continuous line is also “straight’ but the space-time is non-Euclidean because of
Earth’s gravity.

*In a Euclidean geometry the generalized Pythagoras theorem applies. In
Eq. (1.4) the right-hand side has positive as we}l as negative squares. Hence
the word ‘pseudo’.  Since this difference is not significant in many geometrical
properties of space-time,wewill drop this adjective where it causes no confusion.
Thus the word ‘non-Euclidean’ will imply ‘other than Euclidean as well as
pseudo-Euclidean’.
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is thrown vertically upwards with a velocity v. If we assume for
the moment that the Earth has no gravitational field and that the
projectile is moving freely, we can deduce from Newton’s first law
of motion that it will continue to move in this direction with the
same velocity v so that at a time ¢ later, it will be at a height

h=|v]|t. (1.9)

In the space-time diagram of Fig. 1 with # on the horizontal
axis and # on the vertical axis, this trajectory is shown by a dotted
straight line.

However, if we now take account of the downward acceleration
due to the Earth’s gravity of magnitude g, Eq. (1.9) is changed to

h=|v|t—}gr? (1.10)

and the track in the space-time diagram is a parabola. (In Fig. 1,
this is shown by a continuous curve.)

According to Newton the deviation of this curve from the dotted
straight line is due to the Earth’s gravitational force. By contrast,
according to Einstein, the second curve represents ‘uniform motion
in a straight line’ but in a non-Euclidean space-time. Such an
approach recognizes the permanency of Earth’s gravitation and
incorporates it in the geometry of the space-time.

Einstein® formulated the general theory of relativity in 1915,
some ten years after the special theory. To what extent has this
theory resolved the difficulties discussed in the last section? How
good has it been on the observational front? These are the questions
I shall return to, towards the end of this lecture course. I end this
lecture with a brief discussion of another important concept which
influenced Einstein in his formulation of general relativity.

1.3 Mach’s Principle

When formulating his laws of motion Newton had been concerned
with the notion of inertia and the inertial force. His second law
of motion is written in the form

mr=F (1.11)

where m is the mass and ¥ the acceleration of a particle acted upon
by an external force F. The mass m, which is indicative of the
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resistance offered by the particle to a change of its velocity, is the
measure of its inertia. The larger the mass of the particle, the less
is the change in the velocity induced by a given force.

In the above equation an important question arises: what is the
frame of reference? Suppose we denote it by S and then consider
another frame S’, accelerated with respect to S by a. Suppose the
external force is such that it does not change when measured in S’.
Then we must have the following relation for the motion of the
above particle in S':

mr’' =F —ma (1.12)

where r'’ is its acceleration measured in S’. (It is assumed here that
m, being the intrinsic property of the particle, does not change.)
Thus, in S’ the second law of motion applies provided we add an
additional force —ma. This force, which is proportional to the
mass of the particle, is called the inertial force. An example of such
a force is the so-called centrifugal force arising in a circular motion.
An observer sitting on a stone tied to a string and whirled in a circle
sees the stone at rest. In order to reconcile with the second law of
motion he has to invent a centrifugal force to balance the pull of the
taut string.

Clearly, the necessity of including inertial forces shows that not
all frames of reference are equivalent, so far as the second law of
motion is involved. There is a unique class of frames in which no
inertial forces are required. What is the nature of a special frame
in which no inertial force is needed? How is it identified obser-
vationally? Newton could do no better than postulate the exist-
ence of such a frame which he called the absolute space. Frames
accelerated in relation to the absolute space would require suitable
inertial forces. The Earth’s rotation relative to the absolute space
can be measured, for example, by the Foucault pendulum experiment
which makes use of the inertial forces.

In the last century the philosopher and scientist Ernst Mach?
criticized this ad hoc status of the absolute space. By then an
astronomical result had emerged which showed how to identify the
special frame of reference. It was the frame in which the distant
stars are non-rotating.* In other words, Newton’s absolute space

*Later observations indicate a slow rotation of the stars in our Galaxy. How-
ever, the external galaxies in the universe do show the non-rotating property
to a high degree of accuracy.
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can not only be identified by a local experiment but also by
looking at the distant matter. For example, the Earth’s rotation
about its axis as measured by a Foucault pendulum experiment can
be compared with that obtained relative to the distant stars. In
either case we get the same answer. This coincidence, Mach argued,
must have a deep significance which was not reflected in the formula-
tion of Newtonian dynamics.

The fact that the local inertial frame is the one in which the
distant stars are mon-rotating, implied, according to Mach, an
intimate connection between the background of distant matter and
the concept of inertia. Remove the background and the concept of
inertia becomes meaningless. Consider, for example, the idealized
case of a single particle in an otherwise empty universe. Since it is
not subject to any force, Eq. (1.11) becomes

mi =0, (1.13)

What should we conclude from this? If we say F =0, then we get
the particle moving with a uniform velocity—a meaningless result
since there is no background to measure this velocity or to deduce
its constancy. In the absence of a background frame of reference,
r should have an indeterminate value. Such a conclusion is possible
if m=0. The property of ineriia therefore isnot an intrinsic property
of the particle but is dependent on the existence of a background.
This concept, which was not quantified by Mach, is called Mach’s
principle. 1t has had a mixed reception among the theoretical
physicists. Some are unimpressed by the reasoning while others
attach a lot of significance to it. Einstein himself took it seriously
and hoped to incorporate it into general relativity. In this, as we
shall see later, he was not very successful. '

1.4 The Desirable Features of
a Gravitation Theory

I now return to the question raised earlier: what should be the
desirable features of a gravitation theory? This question can only
be answered against the background of the current state of the rest
of physics.

First, as discussed in Section 1.2, the theory should resolve the
inconsistencies of blending Newtonian gravitation with the special
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theory of relativity. The factthat both these theories represent
some approximation to the truth, suggests that a new, more sophisti-
cated theory should resemble Newtonian gravitation when special
relativistic effects are negligible and should reduce to special relati-
vity in the approximation when the gravitational effects 'are small.

Other desirable features include a further understanding of Mach’s
principle, an easy adaptability with quantum physics and the
suggestion (if not the proof) of a link of gravitation with other
interactions of physics.

In these lectures which will deal mainly with general relativity,
I shall discuss how far this theory possesses these features. I shall
also describe briefly some of the alternative approaches to general
relativity.

1.5 Two Approaches to General Relativity

A survey of literature on general relativity shows that the theory
has been developed from two points of view: physical and mathe-
matical. The physical aspect emphasizes that the primary aim of
the theory is to explain the phenomenon of gravitation as observed
in nature. The techniques used in this development are similar to
those in the rest of theoretical physics. The space-time is described
by four coordinates and all the physical and geometrical quantities
are studied in terms of these coordinates. The other approach aims
at looking at the intrinsic properties of space-time using, as far as
possible, coordinate-free techniques.

There is something to be said for either approach. The physical
approach, which will be adopted in these lectures, is useful in study-
ing gravitation in relation to the rest of physics. It is certainly
needed in solving specific problems of gravitating objects. However,
when looking at certain global properties of space-time this approach
is at a disadvantage compared to the intrinsic method. The latter
is able to yield powerful theorems on space-time structure, e.g.,
singularities, horizons, trapped surfaces, etc., which cannot be so
elegantly described in a coordinate-dependent description. Never-
theless, an understanding of the coordinate-dependent physical
approach is necessary in order to appreciate the power of the intrinsic
one. Hence a first course on general relativity should emphasize
the coordinate-dependent physical approach.



