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Statistical Physics of Particles

Statistical physics has its origins in attempts to describe the thermal properties
of matter in terms of its constituent particles, and has played a fundamental
role in the development of quantum mechanics. It describes how new behavior
emerges from interactions of many degrees of freedom, and as such has found
applications outside physics in engineering, social sciences, and, increasingly,’
in piological sciences. This textbook introduces the central concepts and tof)ls
of statistical physics. It includes a chapter on probability and related issues
such as the central limit theorem and information theory, not usually covered
in existing texts. The book also covers interacting particles, and includes an-
extensive description of the van der Waals equation and its derivation by
mean-field approximation. A companion volume, Statistical Physics of Fields,
discusses non-mean field aspects of scaling and critical phenomena, through
the perspective of renormalization group. ’ "

Based on lectures for a course in statistical mechanics taught by Professor
Kardar at Massachusetts Institute of Technology (MIT), this textbook contains
an integrated set of problems, with solutions to selected problems at the end
of the book. It will be invaluable for graduate and advanced undergraduate
courses in statistical physics. Additional solutions are available to lecturers on
a password protected website at www.cambridge.org/9780521873420.

MeHRAN KARDAR is Professor of Physics at MIT, where he has taught and
researched in the field of statistical physics for the past 20 years. He received
his B.A. at Cambridge, and gained his Ph.D. at MIT. Professor Kardar has
held research and visiting positions as a junior Fellow at Harvard, a
Guggenheim Fellow at Oxford, UCSB, and at Berkeley as a Miller )

Fellow. :



In this much-needed modern text, Kardar presents a remarkably clear view of statistical
mechanics as a whole, revealing the relationships between different parts of this diverse subject.
In two volumes, the classical beginnings of thermodynamics are connected smoothly to a
thoroughly modern view of fluctuation effects, stochastic dynamics, and renormalization and
scaling theory. Students will appreciate the precision and clarity in which difficult concepts are
presented in generality and by example. I particularly like the wealth of interesting and
instructive problems inspired by diverse phenomena throughout physics (and beyond!), which
illustrate the power and broad applicability of statistical mechanics.

Statistical Physics of Particles includes a concise introduction to the mathematics of probability
for physicists, an essential prerequisite to a true understanding of statistical mechanics, but which
is unfortunately missing from most statistical mechanics texts. The old subject of kinetic theory
of gases is given an updated treatment which emphasizes the connections to hydrodynamics.

As a graduate student at Harvard, I was one of many students making the trip to MIT from across
the Boston area to attend Kardar's advanced statistical mechanics class. Finally, in Statistical
Physics of Fields Kardar makes his fantastic course available to the physics community as a
whole! The book provides an intuitive yet rigorous introduction to field-theoretic and related
methods in statistical physics. The treatment of renormalization group is the best and most
physical I've seen, and is extended to cover the often-neglected (or not properly explained!) but
beautiful problems involving topological defects in two dimensions. The diversity of lattice
models and techniques are also well-illustrated and complement these continuum approaches. The
final two chapters provide revealing demonstrations of the applicability of renormalization and
fluctuation concepts beyond equilibrium, one of the frontier areas of statistical mechanics.

Leon Balents, Department of Physics, University of California, Santa Barbara

Statistical Physics of Particles is the welcome result of an innovative and popular graduate
course Kardar has been teaching at MIT for almost twenty years. It is a masterful account of the
essentials of a subject which played a vital role in the development of twentieth century physics,
not only surviving, but enriching the development of quantum mechanies. Its importance to
science in the future can- only increase with the rise of subjects such as quantitative biology.

Statistical Physics of Fields builds on the foundation laid by the Statistical Physics of Particles,
with an account of the revolutionary developments of the past 35 years, many of which were
facilitated by renormalization group ideas. Much of the subject matter is inspired by problems in
condensed matter physics, with a number of pioneering contributions originally due to Kardar
himself. This lucid exposition should be of particular interest to theorists with backgrounds in
field theory and statistical mechanics

David R Nelson, Arthur K Solomon Pyofessor of Biophvsics Harvard University

If Landau and Lifshitz were to prepare a new edition of their classic Statistical Physics text they
might produce a book not uuiike this gem by Mehran Kardar. Indeed, Kardar is an extremely rare
scientist, being both brilliant in formalism and an astoundingly careful and thorough teacher. He
demonstrates both aspects of his range of talents in this pair of books, which belong on the
bookshelf of every serious student of theoretical statistical physics

Kardar does a particularly thorough job of explaiing the subtleties of theoretical topics too new
to have been included even in Landau and Lifshitz's most recent Third Edition (1980), such as
directed paths in random media and the dynamics of growing surfaces, which are not in any text *
to my knowledge. He also provides careful discussion of topics that do appear in most modern
texts on theoretical statistical physics, such as scaling and renormalization group.

H Eugene Stanley, Director, Center for Polymer Studies, Boston University

This is one of the most valuable textbooks I have seen in a long time. Written by a leader in the
field, it provides a crystal clear, elegant and comprehensive coverage of the field of statistical
physics. I'm sure this book will become “the” reference for the next generation of researchers,
students and practitioners in statistical physics. I wish [ had this book when I was a student but I
will have the privilege to rely on it for my teaching.

Alessandro Vespignani, Center for Biocomplexity, Indiana University



Preface

Historically, the discipline of statistical physics originated in attempts to
describe thermal properties of matter in terms of its constituent particles, but
also played a fundamental role in the development of quantum mechanics.
More generally, the formalism describes how new behavior emerges from
interactions of many degrees of freedom, and as such has found applications
in engineering, social sciences, and increasingly in biological sciences. This
book introduces the central concepts and tools of this subject, and guides
the reader to their applications through an integrated set of problems and
solutions.

The material covered is directly based on my lectures for the first semester
of an MIT graduate course on statistical mechanics, which I have been teaching
on and off since 1988. (The material pertaining to the second semester is
presented in a companion volume.) While the primary audience is physics
graduate students in their first semester, the course has typically also attracted
enterprising undergraduates. as well as students from a range of science and
engineering departments. While the material is reasonably standard for books
on statistical physics, students taking the course have found my exposition
more useful, and have strongly encouraged me to publish this material. Aspects
that make this book somewhat distinct are the chapters on probability and
interacting particles. Probability is an integral part of statistical physics, which
is not sufficiently emphasized in most textbooks. Devoting an entire chapter to
this topic (and related issues such as the central limit theorem and information
theory) provides valuable tools to the reader. In the context of interacting
particles, I provide an extensive description of the van der Waals equation,
including its derivation by mean-field approximation.

An essential part of learning the material is doing problems; an interesting
selection of problems (and solutions) has been designed and integrated into
the text. Following each chapter there are two sets of problems: solutions to
the first set are included at the end of the book, and are intended to introduce
additional topics and to reinforce technical tools. Pursuing these problems
should also prove useful for students studying for qualifying exams. There



Preface

are no solutions provided for a second set of problems, which can be used in
- assignments,

I am most grateful to my many former students for their help in formulating
the material, problems, and solutions, typesetting the text and figures, and
pointing out various typos and errors. The support of the National Science
Foundation through research grants is also acknowledged.



Statistical Physics of Particles, 1st ed. (978-0-521-87342-0) by Mehran Kardar
first published by Cambridge University Press 2007

All rights reserved.

This reprint edition for the People’s Republic of China is published by arrange-
ment with the Press Syndicate of the University of Cambridge, Cambridge , United
Kingdom.

© Cambridge University Press & Beijing World Publishing Corporation 2010
This book is in copyright. No reproduction of any part may take place without the
written permission of Cambridge University Press or Beijing World Publishing
Corporation. )

This edition is for sale in the mainland of China only, excluding Hong Kong
SAR, Macao SAR and Taiwan, and may not be bought for export therefrom.

WA e A RICHIEBE A, REFEFE. BITHRITEX B+
Ha®s. Ao,



Contents

Preface

1 Thermodynamics

1.1
1.2
1.3
14
1.5
1.6
1.7
1.8
1.9

Introduction

The zeroth law

The first law

The second law

Carnot engines

Entropy

Approach to equilibrium and thermodynamic potentials
Useful mathematical results

Stability conditions

1.10 The third law
Problems

2 Probability

2.1
22
2.3
24
2.5
2.6
27

General definitions

One random variable

Some important probability distributions

Many random variables

Sums of random variables and the central limit theorem
Rules for large numbers

Information, entropy, and estimation

Problems

3 Kinetic theory of gases

3.1
32
33
34
35
3.6
37

General definitions

Liouville’s theorem

The Bogoliubov-Bom-Green-Kirkwood—Yvon hierarchy
The Boltzmann equation

The H-theorem and irreversibility

Equilibrium properties

Conservation laws

page ix

00 h B == pm

10

16
20
22
26
29

35
35
36

43
45
47
50
52

57
57
59
62
65
71
75
78



vi

Contents

3.8 Zeroth-order hydrodynamics
3.9 First-order hydrodynamics
Problems

4 Classical statistical mechanics
4.1 General definitions

4.2 The microcanonical ensemble
4.3 Two-level systems -

4.4 The ideal gas

4.5 Mixing entropy and the Gibbs paradox
4.6 The canonical ensemble -

4.7 Canonical examples

4.8 The Gibbs canonical ensemble
4.9 The grand canonical ensemble
Problems

5 Interacting particles

5.1 The cumulant expansion

5.2 The cluster expansion

5.3 The second virial coefficient and van der Waals equatlon
5.4 Breakdown of the van der Waals equation

5.5 Mean-field theory of condensation

5.6 Variational methods

5.7 Corresponding states

5.8 Critical point behavior

Problems

6 Quantum statistical mechanics
6.1 Dilute polyatomic gases

6.2 Vibrations of a solid

6.3 Black-body radiation

6.4 Quantum microstates

6.5 Quantum macrostates
Problems

7 Ideal quantum gases

7.1 Hilbert space of identical particles
7.2 Canonical formulation

7.3 Grand canonical formulation

7.4 Non-relativistic gas

7.5 The degenerate fermi gas

82
84
87

98

98

98
102
105
107
110
113
115
118
120

126
126
130
135
139
141
143
145
146
148

156
156
161
167
170
172
175

181
181
184
187
188
190



Contents

7.6 The degenerate bose gas 194
7.7 Superfluid He* 198
Problems 202
Solutions to selected problems 211
Chapter 1 . 211
Chapter 2 224
Chapter 3 235
Chapter 4 256
Chapter 5 268
Chapter 6 285
Chapter 7 300

Index 318

vii



1
Thermodynamics

1.1 Introduction

Thermodynamics is @ phenomenological description of properties of macro-
scopic systems in thermal equilibrium.

Imagine yourself as a post-Newtonian physicist intent on understanding the
behavior of such a simple system as a container of gas. How would you
proceed? The prototype of a successful physical theory is classical mechanics,
which describes the intricate motions of particles starting from simple basic
laws and employing the mathematical machinery of calculus. By analogy, you
may proceed as follows:

o Idealize the system under study as much as possible (as is the case of a point
particle). The concept of mechanical work on the system is certainly familiar, yet
there appear to be complications due to exchange of heat. The solution is first to
examine closed systems, insulated by adiabatic walls that don’t allow any exchange
of heat with the surroundings. Of course, it is ultimately also necessary to study
open systems, which may exchange heat with the outside world through diathermic
walls.

® As the state of a point particle is quantified by its coordinates (and momenta), proper-
ties of the macroscopic system can also be described by a number of thermodynamic
coordinates or state functions. The most familiar coordinates are those that relate
to mechanical work, such as pressure and volume (for a fluid), surface tension and
area (for a film), tension and length (for a wire), electric field and polarization (for
a dielectric), etc. As we shall see, there are additional state functions not related to
mechanical work. The state functions are well defined only when the system is in
equilibrium, that is, when its properties do not change appreciably with time over
the intervals of interest (observation times). The dependence on the observation time
makes the concept of equilibrium subjective. For example, window glass is in equi-
librium as a solid over many decades, but flows like a fluid over time scales of
millennia. At the other extreme, it is perfectly legitimate to consider the equilibrium
between matter and radiation in the early universe during the first minutes of the
Big Bang.



Fig. 1.1 llustration of the
zeroth law: systems A
and B, which are initially
soeparately in equilibrium
with C, are placed in
contact with each other.

Thermodynamics

o Finally, the relationship between the state functions is described by the laws of
thermodynamics. As a phenomenological description, these laws are based on a
number of empirical observations. A coherent logical and mathematical structure
is then constructed on the basis of these observations, which leads to a variety of
useful concepts, and to testable relationships among various quantities. The laws of
thermodynamics can only be justified by a more fundamental (microscopic) theory
of nature. For example, statistical mechanics attempts to obtain these laws starting
from classical or quantum mechanical equations for the evolution of collections of

particles.

1.2 The zeroth law

The zeroth law of thermodynamics describes the transitive nature of thermal
equilibrium. It states:

If two systems, A and B, are separately in equilibrium with a third system, C,
then they are also in equilibrium with one another.

Despite its apparent simplicity, the zeroth law has the consequence of implying
the existence of an important state function, the empirical temperature ©, such
that systems in equilibrium are at the same temperature.

Let the equilibrium state of systems A, B, and C be described by the
coordinates {A,, A,,-:-}, {B;,B,,---}, and {C;, C,, -}, respectively. The
assumption that A and C are in equilibrium implies a constraint between
the coordinates of A and C, that is, a change in A; must be accompanied by
some changes in {A,,-:-;C,, C,,---} to maintain equilibrium of A and C.
Denote this constraint by

fAC(Al’A27"';Cl’C29"')=0- (1.1)
The equilibrium of B and C implies a similar constraint
' fac(Biy By -3 €1, Gy o) =0, 12)

Note that each system is assumed to be separately in mechanical equilibrium.
If they are allowed also to do work on each other, additional conditions (e.g.,
constant pressure) are required to describe their joint mechanical equilibrium.



1.2 The zeroth law

Clearly we can state the above constraint in many different ways. For example,
we can study the variations of C, as all of the other parameters are changed.
This is equivalent to solving each of the above equations for C, to yield !

Ci=Fuc(A Ay, -5 Gy, -00),

(1.3)
Cy= Fpc(By, By, -5 Cy,0 ).
Thus if C is separately in equilibrium with A and B, we must have
Fuc(A Ay 3Gy, ) =Fpe(B, By, -+ 5 Gy, o). (1.4)

However, according to the zeroth law there is also equilibrium between
A and B, implying the constraint

Sfas(A, Ay, o+ 3By, By, -0 ) =0, (1.5)

We can select any set of parameters {A, B} that satisfy the above equation, and
substitute them in Eq. (1.4). The resulting equality must hold quite indepen-
dently of any set of variables {C} in this equation. We can then change these
parameters, moving along the manifold constrained by Eq. (1.5), and Eq. (1.4)
will remain valid irrespective of the state of C. Therefore, it must be possible
to simplify Eq. (1.4) by canceling the coordinates of C. Alternatively, we can
select any fixed set of parameters C, and ignore them henceforth, reducing the
condition (1.5) for equilibrium of A and B to

04(A1, Ay, +-) =6y(By, By, ), (1.6)

that is, equilibrium is characterized by a function ® of thermodynamic coor-
dinates. This function specifies the equation of state, and isotherms of A are
described by the condition 6,(A,, A,, :--) = ©. While at this point there are
many potential choices of ©, the key point is the existence of a function that
constrains the parameters of each system in thermal equilibrium.

There is a similarity between ©® and the force in a mechanical system.
Consider two one-dimensional systems that can do work on each other as
in the case of two springs connected together. Equilibrium is achieved when
the forces exerted by each body on the other are equal. (Of course, unlike
the scalar temperature, the vectorial force has a direction; a complication that
we have ignored. The pressure of a gas piston provides a more apt analogy.)
‘The mechanical equilibrium between several such bodies is also transitive, and
the latter could have been used as a starting point for deducing the existence
of a mechanical force.

! From a purely mathematical perspective, it is not necessarily possible to solve an arbitrary
constraint condition for C,. However, the requirement that the constraint describes real physical
parameters clearly implies that we can obtain C, as a function of the remaining parameters.



Fig. 1.2 Equilibria of a gas
(A) and a magnet (B), and
a gas (A) and a wire (C).

Thermodynamics

As an example, let us consider the following three systems: (A) a wire of
length L with tension F, (B) a paramagnet of magnetization M in a magnetic
field B, and (C) a gas of volume V at pressure P.

!
¢

V.P

' F
(A)&(C) (A)&(B)

Observations indicate that when these systems are in equilibrium, the fol-
lowing constraints are satisfied between their coordinates:

(p+ i) (V=)L — Lo)—c[F — K(L — Lo)] =0,
V2 . %)
(P+ W) (V-b)M-dB=0.

The two conditions can be organized into three empirical temperature func-
tions as

®oc(P+%)(V—b)=c(LfLo—K):d%. (18)

Note that the zeroth law severely constrains the form of the constraint equa-
tion describing the equilibrium between two bodies. Any arbitrary function
cannot necessarily be organized into an equality of two empirical temperature
functions. :

The constraints used in the above example were in fact chosen to reproduce
three well-known equations of state that will be encountered and discussed
later in this book. In their more familiar forms they are written as

(P+a/V)(V—b)=NkzT  (van der Waals gas)
M =(N u2B)/(3kgT)  (Curie paramagnet) . (1.9)
F=(K+DT)(L-L;) (Hooke's law for rubber)

Note that we have employed the symbol for Kelvin temperature T, in place of
the more general empirical temperature ®, This concrete temperature scale can
be constructed using the properties of the ideal gas.

The ideal gas temperature scale: while the zeroth law merely states the
presence of isotherms, to set up a practical temperature scale at this stage, a
reference system is necessary. The ideal gas occupies an important place in
thermodynamics and provides the necessary reference. Empirical observations
indicate that the product of pressure and volume is constant along the isotherms
of any gas that is sufficiently dilute. The ideal gas refers to this dilute limit of



1.3 The first law

water

vapor
0 273.16K T

real gases, and the ideal gas temperature is proportional to the product. The
constant of proportionality is determined by reference to the temperature of the
triple point of the ice-water—gas system, which was set to 273.16 (degrees)
kelvin (K) by the 10th General Conference on Weights and Measures in 1954.
Using a dilute gas (i.., as P -> 0) as thermometer, the temperature of a system
can be obtained from

T(K) = 273.16 x (Pli_%(PV),,m/ m(PV)m_m_m) . (1.10)

1.3 The first law

In dealing with simple mechanical systems, conservation of energy is an impor-
tant principle. For example, the location of a particle can be changed in a
potential by external work, which is then related to a change in its potential
energy. Observations indicate that a similar principle operates at the level of
macroscopic bodies provided that the system is properly insulated, that is, when
the only sources of energy are of mechanical origin. We shall use the following
formulation of these observations:

The amount of work required to change the state of an otherwise adiabatically
isolated system depends only on the initial and final states, and not on the
means by which the work is performed, or on the intermediate stages through
which the system passes.

For a particle moving in a potential, the required work can be used to construct
a potential energy landscape. Similarly, for the thermodynamic system we can
construct another state function, the internal energy E(X). Up to a constant,

Fig. 1.3 The triple point of
ice, water, and steam
occurs at a unique point
in the (P, T) phase
diagram.

Fig. 1.4 The two adiabatic
paths for changing
macroscopic coordinates
between the initial and
final point result in the
same change in internal
snergy.



Thermodynamics

E(X) can be obtained from the amount of work AW needed for an adiabatic
transformation from an initial state X to a final state X,, using

AW = E(X;) — E(X;). (L.11)

Another set of observations indicate that once the adiabatic constraint is
removed, the amount of work is no longer equal to the change in the internal
energy. The difference AQ = AE — AW is defined as the heat intake of the
system from its surroundings. Clearly, in such transformations, AQ and AW
are not separately functions of state in that they depend on external factors such
as the means of applying work, and not only on the final states. To emphasize
this, for a differential transformation we write

40 =dE - aw, (1.12)

where dE =}, d,EdX; can be obtained by differentiation, while dQ and dW
generally cannot. Also note that our convention is such that the signs of work
and heat indicate the energy added to the system, and not vice versa. The first
law of thermodynamics thus states that to change the state of a system we
need a fixed amount of energy, which can be in the form of mechanical work
or heat. This can also be regarded as a way of defining and quantifying the
exchanged heat.

A guasi-static transformation is one that is performed sufficiently slowly
8o that the system is-always in equilibrium. Thus, at any stage of the process,
the thermodynamic coordinates of the system exist and can in principle be
computed. For such transformations, the work done on the system (equal in
magnitude but opposite in sign to the work done by the system) can be related to
changes in these coordinates. As a mechanical example, consider the stretching
of a spring or rubber band. To construct the potential energy of the system
as a function of its length L, we can pull the spring sufficiently slowly so
that at each stage the external force is matched by the internal force F from
the spring. For such a quasi-static process, the change in the potential energy
of the spring is [ FAL. If the spring is pulled abruptly, some of the external
work is converted into kinetic energy and eventually lost as the spring comes
to rest.

Generalizing from the above example, one can typically divide the state func-
tions {X} into a set of generalized displacements {x}, and their conjugate gen-
eralized forces {J}, such that for an infinitesimal quasi-static transformation®

aw = Zlidx‘. (1.13)

2 1 denote force by the symbol J rather than F, to reserve the latter for the frec energy. I hope the
reader is not confused with currents (sometimes also denoted by J), which rarely appear in this
book.



