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Preface

It is fairly standard at present for first-year graduate students in
mathematics in the United States to take a course in abstract algebra.
Most, but not all, of them have previously taken an undergraduate
algebra course, but the content and substance of that course vary
widely. Thus the first graduate course usually begins from first princi-
ples but proceeds at a faster pacg.

This book is intended as a textbook for that first graduate course. It
is based on several years of classroom experience. Any claim to novelty
must be on pedagogical grounds. I have attempted to find and use
presentations and proofs that are accessible to students, and to provide
a reasonable number of concrete examples, which seem to me neces-
sary in order to breathe life into abstract concepts.

My own practice in teaching has been to treat the material in
Chapters I-V as the basic course, and to include material from
‘Chapter VI as time permits. There are in Chapters 1-V, however,
several sections that can be omitted with little consequence for later
chapters; examples include the sections on generators and relations, on
norms and traces, and on tensor products. The selection of “further
topics” in Chapter VI is naturally somewhat arbitrary. Everyone,
myself included, will find unfortunate omissions, and further further
topics will no doubt be inserted by many who use the book. The topics
in Chapter VI are more or less independent of one another, but they
tend to draw freely on the first five chapters. ‘

There are two types of exercises. Some are sprinkled throughout the
text; these are usually straightforward and are intended to clarify the

vii



viil Preface

concepts as they appear. The results of those exercises are often
assumed in the following textual material. The other exercises are at
the ends of thc chapters. They vary widely in difficulty, and are only
rarely referred to later. Of course, not all of the exercises are new, and I
am indebted to a wide variety of sources.

My debts to earlier textbooks will be clear to those familiar with the
sources, but pariicular mention should be made of the works of Artin
[1-4], Van der Waerden [37], Jacobson [17], Zariski—Samuel [41],
and Curtis- Reiner [8]. I have followed Kaplansky’s elegant version of
the Fundamental Theorem of Galois theory.

I have learned more than I can reasonably acknowledge from my
colleagues, past and present. I hope they know who they are and accept
my gratitude. The saine applies to a large number of students, who
have suffered through several preliminary versions and who have
prompted many improvements. I must single out Kwang Shang Wang
and Javier Gomez Calderon, who ferreted out large numbers of mis-
takes, misprints, and obscurities by means of several careful reread-
ings.

Finally, my best thanks go to Helen for all the typing and all the rest.
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Introduction

The conventions and notation of elementary set theory are assumed to be
familiar to the reader. If {S,:a € A} is any family of sets, indexed by a set 4, we
shall write [ [{S,:« € 4}, or simply [].S,, for their Cartesian product. Thus
[[{S.;a€ 4} is the set of all functions f:A4— (J{S,:a€ 4} for which
f(@) € S,, all a € A. If the family {S,} is finite, say {S,...,S,}, or countable,
say {Sy,S,,...}, we may write §; x S, X - x §,, or §; x §, x *-*, re-
spectively, for the Cartesian product. In those cases the elements of the
Carteitan product are conveniently represented as ordered n-tuples
(xy,%5,...,X,), or sequences (x,, X,,...), respectively, where x; € S; for each i.
If S and T are sets we write S\ T for the relative complement of T in S, ie.,
S\T={xeS:x¢T}. '

The cardinality of any set S will be denoted by |S]..

A binary operation on a set S is a function from the Cartesian product § x S
to the set S. For our purposes a binary operation will often be called multi-
plication, with notation (x, y)— xy, or addition, with notation (x, y)— x + y.
A binary operation (say multiplication) on a set S is called associative if
x(yz) = (xy)zforall x, y,z € S.

We shall have occasion to use Zorn’s Lemma, an equivalent of the set-
theoretic Axiom of Choice. A brief discussion, with an example of an appli-
cation, appears in an appendix.

Itis assumed that the reader is conversant with the material of a first course
in linear algebra, including standard matrix operations and basic facts
concerning vector spaces and linear transformations. The existence of a basis
and dimension for a vector space are proved in the appendix. .

We shall denote the set of integers by Z, the rational numbers by @, the real.
numbers by R, and the complex numbers by C. Frequent use will be made of
the division algorithm in Z. Also, familiarity with- Euler’s totient function ¢
will be required on occasion. Details can be found in any book on elementary
number theory or in almost any undergraduate abstract algebra book.
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Chapter I Groups

1. GROUPS, SUBGROUPS, AND HOMOMORPHISMS

A nonempty set with an associative binary operation is called a semigroup,
and a semigroup S having an identity element 1 such that 1x = x1 = x for all
x € Y is called a monoid. Most of the algebraic systems discussed herein will be
semigroups or monoids, but almost always with further requirements
imposed, so the semigroup or monoid aspect will seldom be explicitly

emphasized. .
One trivial consequence of the definition of a monoid deserves mention.

Proposition 1.1. The identity element of a monoid § is unique.
Proof. Suppose 1 and e are identitiesin S. Then | = le =e.

A group is a set G with an associative binary operation (usually called
multipiication) and an identity element 1 satisfying the further requirement
tha. for each x € G there is an inverse element y € G such that xy = yx = 1.

- Proposition 1.2. If G is a group and x € G, then x has a unique inverse
element.

Proof. Let yand z be inverses for x. Then

y=yl=yxz)=(yx)z=1z=1z.

* The unique inverse for x € G is denoted by x ~!. Note that (x ')~ ! = x.
Proposition 1.3. If G is a group and x, y € G, then (xy) ' =y 'x "'
1



2 I Groups

Proof
1_\-;)(}"‘)5") =(xy)y IxT=(x(yy HY)xT=(xh)x t=xx"t =1,
and similarly (y " 'x " ')(xy) = 1.

As Coxeter [7] has pointed out, the “reversal of order” in Proposition 1.3
becomes clear when we think of the operations of putting on our shoes and
socks.

If the binary operation of a group G is written as addition, then the identity
element is commonly denoted by O rather than 1, and the inverse of x by —x
rather than x ', Itis customary to use additive notationonlyif x + y = y + x
forall x, y € G. :

In general, a group G (multip!*~ative again) is called abelian (or commu-
tative) if xy = yx forall x, y € G.

Wewritex® = I, x! = x,x? = xx,and ingeneral x" = x" 'xforl <neZ
Define x " = (x ~!)", again for 1 < n € Z. Itis easy to verify by induction that
the usual laws of exponents hold in any group, viz.,

xmxn - xm+n and (xm)n - xmn

for all x € G, all m,ne Z. The additive analog of x" is nx, so the additive
analogs of the laws of exponents are mx + nx = (m + n)x and n(mx) = (mn)x.

Exercise 1.1. Verify the laws of exponents for groups.

EXAMPLES

1. LetG = {1, —1} = R, with multiplication as usual. Then G is a group.
2. LetG = 2Z,Q,R,orC,with the usual binary operation of addition. Then G
is a group. ‘
3. LetG= O\{O} the set of nonzero rational numbers, under multiplica-
tion. Then G is a group. Similarly this*holds for R\ {0} and C\ {0}, but not for
Z\{0}. (Why?)

4. Let S be a nonempty set. A permutation of S (sometimes called a bijection
of S)isa 1-1 function ¢ from Sonto S. Let G be the set of all permutations of S.
If ¢, 6 € G, we define ¢0 to be their composition product, i.e., ¢0(s) = ¢(6(s))
for all seS. Composition is a binary operation on G (verify), and it is
associative, for if ¢,60,0 € G and s € S, then

(6(00))(s) = ¢(Ba(s)) = ¢[0(a(s))].
and
((¢8)a)(s) = ¢B(a(s)) = p[O(a(s))]-
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G has an identity element, the permutation 1 = 15 defined by 1(s) = s,alls € S,
and each ¢ € G has an inverse ¢ ~' defined by ¢ ~!(s,) = s, if and only if
¢(s,) = s, (there are a few details to be verified). Thus G is a group; we
write G = Perm(S). This example is of considerable importance and will be -
pursued much further.

5. As a special case of the preceding example take S = {1,2,3,...,n}. The,

group G of all permutations of S is called the symmetric group on n letters and
.is denoted by G = S,. If ¢ € S,, it is convenient to display the function ¢

explicitly in the form :

= ( 1 2 )

S\ 92 - dm)
For example, if n = 3, then ¢ = (33 3) is the permutation that maps 1 to 2, 2
to 3, and 3 to 1. The notation makes it quite simple to carry out explicit
computations of the composition product. Suppose, for example, that n = 3
and ¢ = (331),0 =(331) Note from the definition of ¢6 in Example 4 that 0

acts first and ¢ second. Thus @ maps 1 to 3 and ¢ then maps 3 to 1, and so the
composite ¢ maps 1 to 1. Similarly, $0 maps 2 to 3 and maps 3 to 2. Thus

1 2 3\/1 2 3 1 2 3
M‘(z 3 1)(3 2 1)"(1 3 2)‘
Observe that

12 3\/1 2 3\ (123
0"’:(3 2 1)(2 3 1)=<2 ! 3)“’9’

s0 Sy is not an abelian group. It is easy to see that S, is, likewise, not abelian for
any n > 3, although S, and S, are abelian.

6. Let T be an equilateral triangle in the plane with center O. Let Dy denote
the set of symmetries of T, i.e., distance-preserving functions from the plane
ontoitself that carry T onto T (as a set of points). The elements of D, are called
congruences of the triangle T in plane geometry. With composition as the
binary operation, D, is a group. Let us list its elements explicitly. There is, of
course, the identity function 1, with 1(x) = x for all x in the plane. There are
two counterclockwise rotations, ¢, and ¢,, about O as center through angles
of 120° and 240°, respectively, and three mirror reflections 6, , 6,, 8, across the
three lines passing through the vertices of T and through O (see Fig. 1).

It is edifying to cut a cardboard triangle, label the vertices, and determine
composition products explicitly. The result is the “multiplication table”
(Fig. 2) for D,.
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Figure 2

A routine inspection of the tablz shows that each element has an inverse,
and also (if enough time is spent) that the operation is associative. Associativ-
ity is also clear from the fact that each element of D; is a permutation of the
points of the plane. Thus D, is a group.

If we let S = {1,2,3} be the set of vertices of T, then each element of D,
gives rise to a permutation of S, i.e., to an element of the symmetric group S3.
For example, ¢, —(333), 6, — (i 3 3), etc. The result is a 1-1 correspondence
between the group D; of symmetries of T and the symmetric group S;. It
is instructive to label the elements of S, accordingly [e.g, @, = (331), By =
(133),etc.], to write out the multiplication table for S and to compare with the

table above.

7. This time let T be a square in the plane, with center O, and let D, be its
set (in fact group) of symmetries. There are four rotations (one of them the
- identity, through 0°) and four reflections (see Fig. 3). The multiplication table
should be computed.

Again each element of D, gives rise to a permutation of the set S =
{1,2,3,4} of vertices of T, i.., to an element of S,. For example, the rotation
¢, through 90° counterclockwise about O gives the permutation a, = (333 1).
Note in this case, however, that not all elements of S, occur. For example,
(37 34) is not the result of any symmetry of the square.
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Figure 3

8. The quaternion group Q, consists of 8 matrices +1, +1i, +j, +k under
multiplication, where

0-10 0 0 0-10 00 0-1
.|t 0.0 0 . {00 01 k_OO—-lO
"o oo-1" ‘T|1 0o oo “Tlo1 0 o0

0 01 O 0-1 00 10 0 O
and 1 denotes the 4 x 4 identity matrix. It is easy to verify that i =j2 =
k* = —1 and that ij = k. All other products can be determined from those.
For example, since ijk = k2= —1 we have i%jk = —jk = —i, and hence

jk = i. The chief advantage of presenting Q, as a set of matrices is that the
associative law is automatically satisfied.

9. Klein’s 4-group K consists of four 2 x 2 matrices:

10 1 0 -1 0 F—1 0
1—[0 J, a—[o _1:|, b—l: 0 1], and c—L O—l]'

Its multiplication table is Fig. 4.

= onln
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10. Let T be a regular tetrahedron and let G be the set of all rotations of
three-dimensional space that carry T to itself (as a set of points), i.e., all the
rotational symmetries of T. Thus G consists of the identity 1, rotations through
angles of 180° about each of three axes joining midpoints of opposite edges,
and rotations through 120° and 240° about each of four axes joining vertices
with centers of opposite faces. Thus |G| = 12.

Exercise 1.2. Let G be the set of 12 rotational symmetries of a regular
tetrahedron.

(1) Verify that G is a group and write out its multiplication table.

(2) Each element of G gives rise to a permutation of the set of vertices of
the tetrahedron, numbered 1, 2, 3, and 4. List the resulting permutationsin S.

(3) Eachelement of G also gives rise to a permutation of the set of 6 edges
of the tetrahedron. List the resulting permutations in Sg.

Exercise 1.3. Describe the groups of rotational symmetries of a cube
(there are 24) and of a regular dodecahedron (there are 60). It will be helpful to
have cardboard models.

Many more examples will appear as we continue. It will be convenient at
this point to introduce some concepts, some terminology, and some elemen-
tary consequences of the definitions.

The cardinality |G| of a group G is called its order. If G is not finite we
usually say simply that G has infinite order. An easy counting argument shows
that the symmetric group S, has order n!.

A subset H of a group G is called a subgroup of G if the binary operation on
G restricts to a binary operation on H under which H is itself a group. In that
case the identity element of H must be the original identity 1 of G.(Why?) We
write H < G or G > H to indicate that H is a subgroup of G. Referring to the
additive groups Z, @, and R we have, for example,Z < Q, Q < R,and Z < R.

Proposition 1.4. If H is a nonempty subset of a group G, then H < G if
and only if xy ! € Hfor all x, y € H.

Proof. =: Obvious.<: Choose x € Handtake y = x.Thenxy ' =

xx ' =1eH. Next take x=1and any ye Htosee that 1y ' =y ' e H.
Thus x(y~')"! = xy e H whenever x, y € H, so the multiplication on G
restricts to a binary operation on H, which is associative since the original
operation on G is associative. Thus H is a group and so H < G.

Exercise 1.4. 1If G is a finite group and J # H < G, show that H is a
subgroup of G if and only if xy € H whenever x e H, y € H.

Proposition 1.5. If {H,} is any collection of subgroups of a group G, then
N.H, < G.



