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PREFACE

The material in this book was originally prepared for an introductory
course in linear programming given at the Graduate School, U.S. Depart-
ment of Agriculture, Washington, D.C. In developing and expanding
the notes into a suitable text, I have attempted to pursue the same objec-
tives that guided the presentation of the course material. These basic
aims were to instill in the student an ability to recognize potential
linear-programming problems, to formulate such problems as linear-
programming models, to employ the proper computational techniques to
solve these problems, and to understand the mathematical aspects that
tie together these elements of linear programming.

It is very convenient to divide the subject matter of linear programming
into three separate, but not distinct, areas: theoretical, computational,
and applied. In teaching the course, I found it appropriate, instructive,
and beneficial to the students to interlace material from all three areas
as much as possible. Hence, after an introductory lecture on applica-
tions and the mathematical model of linear programming (Chap. 1),
the mathematics of convex sets and linear inequalities were developed
and followed by the computational aspects of the elimination method for
solving linear equations (Chap. 2), The mathematical properties of a
solution to the general linear-programming problem were next evolved.
Then, in an attempt to explain fully the fundamentals of the simplex
computational procedure, the ability to generate extreme-point solutions
was shown to be a simple variation of the elimination technique of Jordan
and Gauss (Chap. 3). The next set of lectures developed the theoretical
and computational elements of the simplex method of G. B. Dantzig
(Chap. 4). A discussion on the duality problems of linear programming
(Chap. 5) was followed by lectures on the formulation of certain illustra-
tive applications (Chaps. 10 and 11). The final lectures of the course!
described the relationship between linear programming and the zero-sum
two-person game (Chap. 12).

The basic-course notes have been revised to include full discussion of
the revised simplex method (Chap. 6), degeneracy procedures (Chap. 7),
parametric programming (Chap. 8), further computational techniques

! This one-semester course consisted of 16 evening lectures of 214 hours’ duration.
vii



viii Preface

(Chap. 9), and other topics and applications. As a result of a suggestion
to the author, all the material has been gathered into three parts: an
introduction, methods, both theoretical and computational, and applica-
tions. It is felt that this arrangement enhances the usefulness of the
book for reference, and presents the three areas of linear programming
in a related but separate manner. Consequently, the reader will find
some relatively advanced topics, such as the revised simplex method and
parametric linear programming, appearing before the basic discussions
of the transportation problem and general applications. It is suggested
that, in order to motivate one’s study of linear programming, the chapters
should not be studied in numerical sequence. Instead, one should, as
soon as possible (probably after Chap. 4 or 5), become acquainted with
material in the applications sections.!

It is felt that the material covered in this text is appropriate for use in
mathematics courses at the senior or first-year-graduate level. However,
because of the interest in linear-programming methods outside the
academic field, it seemed advisable to include sufficient material on
matrices and vectors to make the work complete for all readers (Chap. 2).
It should be noted that much of the mathematical notation used in
subsequent chapters is developed in Chap. 2.2

The search for the best, the maximum, the minimum, or, in general,
the optimum solutions to a variety of problems has entertained and
intrigued man throughout the ages. Euclid, in Book III, was concerned
with finding the greatest and least straight lines that can be drawn from
a point to the circumferencé of a circle, and in Book IV he desecribed how
to find the parallelogram of maximum area with a given perimeter. How-
ever, the rigorous approach to these and more sophisticated problems had
to wait until the great mathematicians of the seventeenth and eighteenth
centuries developed the powerful methods of the calculus and the calculus
of variations. With these techniques we can find the maximum and
minimum solutions to a wide range of optimization problems. These
and other mathematical optimization procedures were mainly concerned
with the solutions to problems of a geometric, dynamic, or physical
nature. Such problems as finding the minimum curves of revolution
and the curve of quickest descent are resolved by these classical opti-
mization methods.

Recently, a new class of optimization problems has originated out of
the complex organizational structures that permeate modern society.

1 In a course that meets three times a week, one lecture could be devoted to applica-
tions and/or reports of case studies cited in the Bibliography.

2 The student will soon find that one of the main difficulties in understanding the
mathematics of linear programming arises from the diverse and often intricate nota-
tion used in many of the source papers of this field. Wherever possible, I have
employed ‘‘standard,” consistent, and, I hope, explicit notation.
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Here we are concerned with such matters as the most efficient manner in
which to run an economy, or the optimum deployment of aircraft that
maximizes a country’s chances of winning a war, or with such mundane
tasks as mixing the ingredients of a fertilizer to meet agricultural specifica-
tions at a minimum cost. Research on how to formulate and solve such
problems has led to the development of new and important optimization
techniques. Among these we find the subject of this book—Iinear
programmang. The linear-programming model, i.e., the optimization
of a linear function subject to linear constraints, is simple in its mathe-
matical structure but powerful in its adaptability to a wide range of
applications.

Historically, the general problem of linear programming was first
developed and applied in 1947 by George B. Dantzig, Marshall Wood,
and their associates of the U.S. Department of the Air Force. At that
time, this group was called on to investigate the feasibility of applying
mathematical and related techniques to military programming and
planning problems. This inquiry led Dantzig to propose ‘“that interrela-
tions between activities of a large organization be viewed as a linear
programming type model and the optimizing program determined by
minimizing a linear objective function.” In order to develop and extend
these ideas further, the Air Force organized a research group under the
title of Project SCOOP (Scientific Computation of Optimum Programs).
Besides putting the Air Force programming and budgeting problems on
a more scientific basis, Project SCOOP’s major contribution was the
formal development and application of the linear-programming model.
These early applications of linear-programming methods fell into three
major categories: military applications generated by Project SCOOP,
interindustry economics based on the Leontief input-output model, and
problems involving the relationship between zero-sum two-person games
and linear programming. In the past 10 years these areas of applications
have been extended and developed, but the main emphasis in linear-
programming applications has shifted to the general industrial area.

The initial mathematical statement of the general problem of linear
programming was made by Dantzig in 1947 along with the simplex
method, a systematic procedure for solving the problem. Prior to this
a number of problems (some unsolved) were recognized as being of the
type that dealt with the optimization of a linear function subject to
linear constraints. The more important examples include the transporta-
tion problem posed by Hitchcock (1941) and independently by Koopmans
(1947) and the diet problem of Stigler (1945). The first successful solu-
tion of a linear-programming problem on a high-speed electronic computer
occurred in January, 1952, on the National Bureau of Standards SEAC
machine. Since that time, the simplex algorithm, or variations of this
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procedure, has been coded for most of the intermediate and large general-
purpose electronic computers in the United States and England.

Linear programming has become an important tool of modern theoreti-
cal and applied mathematics. This remarkable growth can be traced
to the pioneering efforts of many individuals and research organizations.
Specifically, I would like to make special mention of George B. Dantzig,
Murray A. Geisler, Leon Goldstein, Julian L. Holley, Walter W. Jacobs,
Alex Orden, Emil D. Schell, and Marshall K. Wood, all formerly with the
U.S. Department of the Air Force; Leon Gainen, Alan J. Hoffman, and
Solomon Pollack, formerly with the National Bureau of Standards; and
the research groups of the Graduate School of Industrial Administration
of the Carnegie Institute of Technology, The RAND Corporation, the
Department of Mathematics of Princeton University, and the Cowles
Commission for Research in Economics. I would like to thank the above
named individuals and groups, other authors, and their publishers for
their kind permission to use certain basic material contained in what
might be considered “source documents’” of linear programming.
Appropriate references are given in the text.

This edition includes new sections on sensitivity analysis, integer pro-
gramming, and the decomposition algorithm. The latter two subjects
represent important recent advances to the computational aspects of
linear programming. Additional material and exercises have been
included in a number of sections. The section on Available Digital-
computer Codes has been updated, and many new publications have been
included in the references.

I wish to acknowledge the initial encouragement to write this text by
my former associates at the Directorate of Management Analysis of the
Department of the Air Force and to thank Harold Fassberg, Walter W.
Jacobs, Thomas L. Saaty, and Kenneth Webb for their many valuable
suggestions. Special appreciation is due Mrs. Thelma Chesley and Mrs.
Anne Bache for their excellent typing of the original and second-edition
manuscripts, respectively.

Saul I. Gass
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chapter 1
GENERAL DISCUSSION

1. Linear-programming Problems

Programming problems are concerned with the efficient use or alloca-
tion of limited resources to meet desired objectives. These problems are
characterized by the large number of solutions that satisfy the basic
conditions .of each problem. The selection of a particular solution as
the best solution to a problem depends on some aim or over-all objective
that is implied in the statement of the problem. A solution that satis-
fies both the conditions of the problem and the given objective is termed
an optimum solution. A typical example is that of the 1nanufacturer who
must determine what combination of his available resources will enable
him to manufacture his products in a way which not only satisfies his
production schedule, but also maximizes his profit. This problem has as
its basic conditions the limitations of the available resources and the
requirements of the production schedule, and as its objective the desire of
the manufacturer to maximize his gain.

We shall consider only a very special subclass of programming prob-
lems called limear-programming problems. A linear-programming prob-
lem differs from the general variety in that a mathematical model or
description of the problem can be stated, using relationships which are
called “‘straight-line,” or linear. Mathematically, these relationships
are of the form

@y + @z + ¢ 0+ ez + 0+ GaZn = Gof

where the a;’s are known coefficients and the z;'s are unknown variables.
The complete mathematical statement of a linear-programming problem
includes a set of simultaneous linear equations which represent the con-
ditions of the problem and a linear function which expresses the objec-
tive of the problem. In Sec. 2 we shall state a number of programming
problems and formulate them as linear-programming problems.

To solve a linear-programming problem, we must initially concern
ourselves with the solution of the associated set of linear equations.
There are various criteria which can be applied to a set of linear equations

t Geometrically, these relationships are equivalent to straight lines in two dimen-
sions, planes in three dimensions, and hyperplanes in higher dimensions.
3



4  Introduction [Chap. 1

to reveal whether a solution or solutions to the problem exist (see Dickson
[34]).1 The set of two equations in two variables

2z, + 32, =8
x1+2x,=5

has the unigque solution z; = 1 and z, = 2, while the single equation
1+ 22, = 8 - (1.1)
has an #nfinite number of solutions. From (1.1) we have
z, =8 — 22, or z =4 — Yz,

For every value of x, (or z,) there is a corresponding value of z; (or z).
If we further restrict the variables to be nonnegative, i.e., z; > 0 and
zy > 0, we limit the range‘of the variables, since

21 =8 —22,20 implies 0<z,54
and
Te=4—1%42,20 implies << 8

We still have an infinite number of solutions, but the addition of further
restrictions or constraints to (1.1) has resulted in less freedom of action.
As we shall show, the condition of nonnegativity of the variables is an
important requirement of linear-programming problems. Systems like
(1.1) in which there are more variables than equations are called under-
determined. In general, underdetermined systems of linear equations
have either no solution or an infinite number of solutions.

One important method of determining solutions to underdetermined
systems of equations is to reduce the system to a set containing just as
many variables as equations, i.e., a determined set. This can be accom-
plished by letting the appropriate number of variables equal zero. For
example, the underdetermined system

22+ 322+ 23 = 8

Z + 22}3 + 21:3 =§ (1.2)

has three such solutions:

:c1=0 $’=1% 38=_%
$1=1% $3=0 Z;=%

1 Numbers in brackets refer to the publications listed in the References at the
back of the book.
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and
Il=1 23=2 x;=0'|'

Mathematically, linear programming deals with nonnegative solutions
to underdetermined systems of linear equations. As we shall show in the
succeeding chapters, the only solutions we have to be concerned with are
those corresponding to determined subsets of equations that have been
obtained in the manner described above. If, for example, we let Egs.
(1.2) represent the conditions of a linear-programming problem, we need
only to consider the two nonnegative solutions z; = 1, 23 = 2, 23 = 0
and z; = 114, 2; = 0, 23 = 24. The remaining solutions fail to satisfy
either the nonnegativity requirements or other criteria to be discussed.

Just as the general programming problem has some objective that
guides the selection of the solution to be used, the linear-programming
problem has a linear function of the variables to aid in choosing a solution
to the problem. This linear combination of the variables, called the
objective function, must be optimized by the selected solution. If for
(1.2) we wished to maximize the objective function z; + z; + 23, then,
of the two nonnegative solutions, the solution z; = 114, z, = 0, 23 = 34
is the optimum, as it yields a value of 134 for the objective function com-
pared to a value of 3 for the other nonnegative solution. If we wanted to
minimize the objective function z; — z3, then the solution z; = 1, z, = 2,
z3 = 0 would be the optimum, with a value of —1. As we have implied,
the optimum solution either maximizes or minimizes some linear combina-
tion of the variables. Since the maximum of a linear function is equal to
minus the minimum of the negative of the linear function, we lose no
generality by considering only the minimization problem.

With the added condition of optimizing an objective function, we are
now able to select a single solution that satisfies all the conditions of the
problem. There might be multiple solutions in that more than one non-
negative solution to the equations gives the same optimum value of the
objective function. Generally speaking, combining the linear con-
straints of the programming problem .with the optimization of a linear
objective function transforms an underdetermined system of linear
equations that describes a programming problem with many possible
solutions to a system that can be solved for a solution that yields the
unique optimum value of the objective function.

We next give the general mathematical statement of the linear-
programming problem:

{ There are, of course, an infinite number of other solutions to (1.2), which can be
obtained by arbitrarily setting one of the variables equal to a constant; e.g., with
zy = a we have 2, = (11 — 3a)/4and 2; = (-1 + a)/4.
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Minimize the objective function
City Fegeaky A o o » Bhstir - 0 0§ shigata

subject to the conditions

1 2 0

T3 Z 0

z; >0

= 0
and GNTy - ey T @y S a2, = by
an%1 + @z + - - - + Q2;X; 4+ <+ @z, =bs
a1 + @iz + SR T + @ima = b;
AmiTy 1 paa = © * ° o Gy o S S =Yh

where the ¢;forj = 1,2,. . . ,n;b;for¢ =1,2,. . . ,m; and a;; are all

constants, and m < n. The ¢; are called cost coefficients.
As will be discussed in the following chapters, every linear-program-
ming problem has either:

1. No solution in terms of nonnegative values of the variables

2. A nonnegative solution that yields an infinite value to the objective
function

3. A nonnegative solution that yields a finite value to the objective
function

A linear-programming problem that describes a valid, practical program-
ming problem usually has a nonnegative solution with a corresponding
finite value of the objective function.

2. Examples of Linear-programming Problems

To illustrate the application of the above mathematical description of
the linear-programming model, we shall next discuss the linear-program-
ming formulation of three problems. A more detailed discussion of
these and other problems is given in Part 3.

The Transportation Problem. A manufacturer wishes to ship a num-
ber of units of an item from several warehouses to a number of retail
stores. Each store requires a certain number of units of the item, while
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each warehouse can supply up to a certain amount. Let us define the
following:

m = the number of warehouses

n = the number of stores

a; = the total amount of the item available for shipment at ware-

house ¢

b; = the total requirement of the item by store j

z;; = the amount of the item shipped from warehouse 7 to store j
We shall assume that the total amount available is equal to the total

required, that is, Z a; = Z b;. As will be shown later, this assumption
7 i

is not a restrictive one.
The z;; are the unknown shipments to be determined. If we form the
array (form = 2and n = 3)

Stores
1 2 3
1 Tn Z12 Z13 a;
Warehouses
2 T2 Toz T2 as
b] b! bJ

we see that the total amount shipped from warehouse 1 can be expressed
by the linear equation

T + Z12 + Tz = @y (2.1)

For warehouse 2, we have

Zo1 + To2 + Taz = Q2 (2.2)

We also note that the total amounts shipped to the three stores are
expressed by the equations

Tn 4 20 = b
Zig + Tos = by (2.3)
Ty + T23 = b3

The manufacturer knows the cost ¢;; of shipping one unit of the item from
warehouse 7 to store j. We have the additional assumption that the cost
relationship is linear; i.e., the cost of shipping z;; units is ¢;a.

The manufacturer wishes to determine how many units should be sent
from each warehouse to each store so that the total shipping cost is a
minimum. This objective of minimizing the cost is achieved by minimiz-
ing the linear cost function

CuZu + C19%12 + C13%13 + €21%o1 + CooTo2 + Coslay (2-4)
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Since a negative x;; would represent a shipment from store j to warehouse
¢, we require that all the variables z;; > 0.

By combining Egs. (2.1) to (2.3), the objective function (2.4), and the
condition of nonnegativity of the variables, the transpértation problem
form = 2 and n = 3 can be formulated in terms of the following linear-
programming problem:

Minimize the cost function

e + CieTi2 + C13T13 + €T + CaTes + CosTas

subject to the conditions

T11 >0
Z12 >0
Z13 >0
Za1 >0
T2 =20
Zgg 2> 0
and T + Zi2 + 213 =a
Ta1 + Taz + T2z = Q2
T + za = b,
T2 + Z22 = by
Z13 + T3 = by

Activity-analysis Problem. A manufacturer has at his disposal fixed
amounts of a number of different resources. These resources, such as
raw material, labor, and equipment, can be combined to produce any
one of several different commodities or combinations of commodities.
The manufacturer knows how much of resource 7 it takes to produce one
unit of commodity j. He also knows how much profit he makes for each
unit of commodity j produced. The manufacturer desires to produce
that combination of commodities which will maximize the total profit.
For this problem, we define the following:

m = the number of resources

n = the number of commodities

a;; = the number of units of resource 7 required to produce one unit
of commodity j

b; = the maximum number of units of resource 7 available

¢; = profit per unit of commodity j produced

z; = the level of activity (the amount produced) of the jth com-
modity

The a;; are sometimes called input-output coefficients.

The total amount of the ith resource that is used is given by the linear

expression



